血球凝集能を欠く麻疹ウイルスHA遺伝子のクローニング

斎藤	博之	佐藤	宏康*1	原田誠三郎	安倍真理子*
須藤	恒久	天野	憲一* ³	森田 盛大	

1988年に本県で分離された麻疹ウイルス変異株は、これまで麻疹ウイルスの特徴とされてきたサル血球凝集能が欠落 しており、さらに細胞への感染性やHA蛋白の分子量において従来型とは異なっていた。今回はこれらの変異を分子レ ベルで解析し、今後の流行予測の解析に役立てるために変異株HA遺伝子の全構造を決定したので報告する。

キーワード:麻疹ウイルス、 C D N A, 糖鎖付加部位、 2 次構造

I はじめに

1987年から1988年にかけて本県で流行した麻疹は患者 4000名,死者10名を数えた.これまで麻疹ウイルスは変 異を起こさないものと考えられてきたが、この流行が極 めて大規模であったことから,われわれは麻疹ウイルス の変異の可能性に着目し,流行時の分離株について性状 分析を行った.その結果,分離された麻疹ウイルスは, すでに報告¹¹したごとく,血球凝集能を欠き,また,サ ル腎細胞に感染しないなど,従来の分離株とは異なった 性状を有していた.本報では今後の麻疹の流行性を検討 する一環として,これらの性状の違いを分子レベルで解 析し,変異株HA遺伝子の全構造を決定したので報告す る.

Ⅱ 研究方法

1. ウイルス株

1988年に本県で分離された麻疹ウイルスAK-1¹⁾株 を使用した.培養にはマーモセットB細胞由来のB95 a 細胞¹⁾を使用した.

2. クローニング

分離株を感染させたB95a細胞から、ホットフェノー ル法³⁾によりRNAを抽出し、さらにOligo-(dT) カラムクロマトグラフィー⁴⁾によりmRNAを精製した. このmRNAを鋳型とし、Gubler & Hoffman の方法 ⁵⁾により cDNAを合成した.得られた cDNAは Eco Rl リンカーを介して入g t 10のアームにつなぎ、in vi tro Packaging によって100万の独立したクローンを含 むライブラリーを作製した.

3. スクリーニング

亜急性硬化性全脳炎(SSPE)由来の麻疹ウイルス HA遺伝子をランダムプライミング法⁶⁾により蛍光標識 ⁷⁻⁸⁾し,プローブとした.プラークハイブリダイゼーションにより変異株HA遺伝子の c D N A クローンを48個得た.さらにこの中から,サザンブロットにより全長約2

k bの c D N A 断片を含むクローンを選択した. 4. シークエンス

インサート c D N A を λ g t 10から切り離し, P U C 18ベクターの EcoRl site にサブクローニングした後, 蛍光自動シークエンサー(A B I 373 A 型)を用いた ジデオキシ法により塩基配列を決定した.

Ⅲ 研究結果

クローニングされたDNA断片は1947bP(Poly

*'現 大館保健所 *'現 秋田保健所 *"秋田大学医学部実験実習機器センター

— 45 —

図2 AK-1株とEdmonston株のHA遺伝子の比較

5 100 - 100	ACTACCATAC TTATTAACAC	TCCTAAGCCA	АСАЛСССАСА •Т••••С••	TTCTACAAAG	AATAAATGCC G	AACGAGACCG	ATCTCACCAC	ATCATCCACA	AGOGTGCAAG	AK-1 Edmonston
C 200 T 200	CCATTOCAOS CATTAGACTC	OCCTTOCTAG	GACCTTGATC	ICATOTITICI	GTICTATICS	TITICTICCT	GACCTTATGT	ATGATTGATA	AGAACATCTT	101 101
.C 300 - 300	GETCAAGGAE GTGETGACAE	TCGAOCATCA	ACTAACTCAA	TCTAGATOTA	TCACCACCAA	CATAAGAGOC	CCCAGAGAAC	CCATCTACAC	CATCOLOCAG	201 201
x 400 • 400	AAAATTAAAT TOOTTAATOO	CATCTCTCAC	TAGTGAAATT	TTCACTGACC	ACCTCAGAGA	COCTGAOGAC	GATGAAGTOG	GATCATTOCT	CACECTERA	301 301
4 500 • 500	GTOCAGATGT GOUTOCTCAA	GATCAATACT	ATTOCATTAT	AGAGAATCAA	AACCCCCCCAG	TIOTICIATC	GAGATCTCAC	TACGACTTCA	OGATAGOGAG	401 401
A 600	CTUCTCADOG COCACTACAA	CAAAGOGAAA	CTACCTGTCT	CAATCAGTIC	CCAGOCCAAC	CT ACTOGAOG	GAACTCAACT	AIGCATIOGT	GAACTCATGA	501 501
T 700	ACTATGACAT COCACOGAAT	GICTATAGIC	ACAATGTATC	ACTOCACCTT	CTIGTATITA	COCTETTERA	ATGICOCTUT	ATTCTCAAAC	TCAGAGGTCA	601 601
C 800	TOTTICALOT ACCOUNTATC	ATOCACOCAG	ACAACTGAGC	CAGAGTTGTC	ACTAALOCCT	TAATCTCACC	TOCANAROCC	ACTTACCTAG	CTACOCCCCA	701 701
x 900	CATOCIGOCI TIGOCOCLOC	TCAGCAACTG	AGTAATGATT	CCAACCAGTC	ACTATITICA	CATATGACAA	TOCOGTETTE	GTTICOCOOC	AGAAATCCOG	801 801
G 1000	CICUTCANCE TAOUTOTOT	CACCTTCCAG	CCAAACCTCT	CAGOCGTCAG	AATTCCCTAT	ATTCTATCAC	CACAGGEAAG	ACCOLICICI	TTAAATTCOC	901 901
LC 1100	ACAGAGETET TATCECTGAC	CTCTCATCTC	TAGGETTTAC	CAGTGATAGA	ACOGATGATC	COCCTATCA	GATOCTOOCT	ACCENCATOR	GAAATCOCCA	1001
CT 1200	GOTTANANC CANCENCTET	ACCCCTCTAA	TGCTTOCAGE	AATGGAGACA	ACAACTTOOD	COCACAGATO	COCGACAACA	AATOGOCTGT	AATCAAGCAA	1101
AT 1300	GTTGAGCTTA ANATCANANT	GAGTETGACA	CTGTTAATCT	COCCTCTTCT	TOUTICATAC	ATAACAGGAT	CCATTGAAGG	CGAGTOGOCA	OCCAGAATOO	1201
AG 1400	TGACTATOOC GOCAATGAAG	GTGTATIGGE	CCACAACAAT	ACANALCCAN	ATGCACCTAT	COUTTCAGO	TGATCACACA	TICOCOCCAT	TECTICAGEA	1301
CT 1500	CHARGEMARK GOOGAGEMET	CTOTICCANT	AACCTCTTCA	GETTAGTOCC	CGAGATTCAA	GAGTOGATAC	CAACACATTG	TAGGTGTAAT	AACCTACCCT	1401
C 1600	GATETOCIAN ATGETTE	ACCTOGICAG	TGUTAATTCT	AGTTOCANTO	TETCALACTO	TOGATOCTO	CCTOCOGAOG	AACATACCTA	GCCATGCCCC	1501
AG 1700	CITITAGOTT GOUTATAAAG	TACTITIATC	CICATITICI	GODEAAGOOG	TATETTTAC	TGIGGITTAT	TIGAACATGO	ACTICCAGO	AACCTACGAT	1601
TA 1800	CTCAGAATCT GGTGGACATA	TICTTOCCGA	CACITOTOTO	CTCCTCCCCT	. NCANANACT	TICACATOO	AGTOGAATGO	TOGAATTACA	CCCCTCCCAA	1501
1800 AT 1900	CAGTGAACCG ATCACATGAT	ATAGOGETOC	CCAATCGCAG	GAAGATGGAA	AGTEACTEOR	TCAOCTOCAC	GOCATOGGAG	TOCGATOCIC	TCACTCACTC	1801
1900	· [<u> </u>	y(k)	AAG ···pal	CATCAGAATT	GTGAAATAGA	ACCCACTACT	CATCAGOCAT	GTCACCCAGA	1901
										1901

Nucleotide sequence comparison of HA genes from the AK-1 and Edmonston strains (12). Solid dots represent nucleotide identity, and underlined codons ATG and TAG are translational start and stop signals respectively.

表1 AK-1株のHA蛋白におけるアミノ酸置換

Residue	Amino	acid
No.	Edmonston	AK-1
69	110	Asn
174	Thr	Ala
176	Thr	Ala
211	Gly	Ser
243	Arg	Giy
252	Tyr	HIS
276	Leu	Phe
284	Leu	Phe
296	Leu	Phe
302	Gly	Arg
334	Gln	Arg
389	lle	Asn
416	Asp	Asn (–Leu–Ser)
446	Ser	Thr
481	Tyr	Asn
484	Asn	Thr
575	GIn	Lys
599	Glu	Val

A 部分を除く)で、21~23番塩基の開始コドンATG から1872~1874番塩基の終止コドンTAGに至るまでの 617個のアミノ酸からなるオープンリーディングフレー ムを含んでいた. これと Edmonston 株⁹⁾との塩基配 列の比較では、60個の塩基置換が認められ、そのホモロ ジーは97%であった.

アミノ酸レベルでは18個のアミノ酸が置換していて (図3および表1),そのホモロジーは97%であった.特 に注目すべきことは、416番目のアミノ酸がアスパラギ ン酸からアスパラギンに換わっており、それによって Asn - Leu - Ser からなる糖鎖付加部位が新たに生じて いたことであった(表1).Edmonston株のHA蛋白 では5カ所に糖鎖が付加していると報告⁹⁾されているが、 AK-1株では6カ所に増えていると考えられた(図3、 囲み線部分).このことを確認するためにEdmonston 株とAK-1株のHA蛋白をSDS-PAGE¹⁰⁾で分離し た後、PAS染色¹¹⁰した結果を図4に示した.これによ ると、ウェスタンブロット¹¹では同じ量のHA蛋白(図

図3 AK-1株とEdmonsto	n株のHA蛋日ア	ミン	/ 酸配列の比	〔靫
-------------------	----------	----	---------	----

Edmonston	1	MSPQRDRINA	FYKDNPHPKG	SRIVINREHL	NIDR <u>PYVLLA</u>	VLFVNFLSLI	GLLAIAGIRL	HRAAIYTAEI	HKSLSTNLDV	TNSIEHQYKD	VLTPLFKIIG	100
YY-1	1		••••	•••••		*******	<u></u>					100
Chicago-1	1	#	•••••	• • • • • • • • • • •		••••		•••••	•••••	• • • • • • • • • • •		100
									ተጉ			
Edmonston	101	DEVGLRTPQR	FTDLVKFISD	KIKFLNPDRE	YDFRDLTWCI	NPPERIKLDY	DQYCADYAAE	ELNNALVNST	LLETRTTNOF	LAVSKENCSG	PTTIRGQFSN	200
AX-1	101			• • • • • • • • • • • •			• • • • • • • • • • • •		*********			200
Chicago-1	101											200
0010080 1								•				200
			*				¥			*		
Edmonston	201	ASESTEDEAT	GRGYNYSSIY	THISQUAYUG	TYLVERPNLS	STREETSATE	MYRYFEYGYI	RNPGLGAPYF	HNTNYLEQPV	SNULSNCMYA	LGELKLAALC	300
AK-1	201		5		•••••	••G•••••	• # • • • • • • • •	********	••••F••••	•••F•••••	••••F••••	300
Chicago-1	201		S		· · · · G · · · · · ·	• • G • • • • • • •	H • • • • • • • • •		· · · · · F · · · ·	• • • F • • • • • •	••••RF••••	300
							•• •		•	• •		
Fdaaaabaa	901	UCEDCITINY	000000000000	I UVI CURVED	TOWOCEVOLC	TRADUCARLY	LCOURCYLLD	NOTEST	STREVI BUTT	aroo tavary	ALL OFUNERA	400
Lamonston	301	AGEDOLLIPT	Anonyacan	LINCOTTAN	IUMUSHTELS	TOURTINKLT	LOOUKGAIND	NUMBER	KIUUKLKACI	CPREACKERT	WALCENPERA	400
AK-1	301	•K•••••	• • • • • • • • • • • •	• • • • • • • • • • • •	••• R •• • • • •	•••••	• • • • • • • • • • • •	•••••	•••••	••••N	••••	400
Chicago-1	301	•R•••¥•¥••	•••••	• • • • • • • • • • •	••••	*********		• • • • • • • • • • •	••••	• • • • • • • • • N		400
			.1.			.1.				.l.		
Education	101	V2010ND10CV	T 12 1012 1V2	VELVIVIASC	FOR ITHOSE	NUL ARCHING	VVVITIDDWE	NULLCVINTE	CWIDDCVVCD	VIENVOIVEL	CEDCHARTYI	500
Lumonscon	101	IGADMATIOT	0100100011	LEVIVIVOO	rururuuuu	NULIKONINA	1186111184	HEALOT THIL	CHITALATOL	JUPNITIALA	OFFICIATIO	200
XX-1	401	••••		•••••				••••	•••••	¥1	••••	500
Chicago-1	401	••••	···· (<u>N··</u> ··	• • • • • • • • • • •	••••	•••• T ••••	• • • • • • • • • • •	•••••	••••	N • • • • • • • • • •	• • • • • • • • • • •	500
Edmonston	501	PAEVDGDVXI.	SSNLV11.PG0	DLOYVLATYD	TSRVEHAVVY	YYYSPSRSFS	YEYPERLP1K	GVP FELOVEC	FTYDOXLYCR	RECVIADSES	GGHITHSGME	600
48-1	501											600
AA 1 AL /	501											000
Unicago-1	9U I	••••••					•••••	•••••		•••••		600
Edmonston	601	GMGVSCTVTR	EDGTNRR	617								
48~1	601			617								
Chicego-1	601			617								
0010480 1	001			017								

Comparison of the deduced amino acid sequence of HA proteins of the AK-1. Edmonston (9) and Chicago-1 strains (12). Solid dots represent the amino acids identical to those of the Edmonston strain. Arrows indicate identical substitutions between the AK-1 and Chicago-1 strains when compared with the Edmonston strain. The major hydrophobic regions are underlined. The potential N-linked glycosylation sites are boxed.

(A)Samples containing 20 μ g protein prepared by ultracentrifugation from BSSa cell cultures were western bloted using an antiserum monospecific to HA protein of measles virus. (B) Samples of 200 μ g were separated on SDS-PAGE and their carbohydrate molety was detected by PAS staining. Arrow indicates the HA protein band. 4 A) であるにもかかわらず, PAS染色ではAK-1 株のHA蛋白が濃く染まった(図4B) ことから, 糖含 量の増加が示唆された.また, N末端側の疎水性領域に は変異は認められなかった(図3,下線部分). 1989年 に米国で分離された Chicago-1株¹⁰とのアミノ酸配 列の比較では,上記18カ所の変異のうち糖鎖付加部位を 含む13カ所までが一致していた(図3,矢印部分).

アミノ酸配列から Garnier の方法¹³に従って計算し たHA蛋白の2次構造を図5に示した.これによると, ①~③で示した部分の折れ曲がり構造がAK-1株にお いては消失していることがわかった.また,このうち① の部分の変異は、168~240番アミノ酸残基の糖鎖が密集 している領域(箱線で囲って示す)に位置していた.ア ミノ酸配列から Kyte の方法¹⁰で予測したHA蛋白の疎 水性については、図6の矢印で示したごとく、3カ所に わずかな違いが認められた.同様に計算した等電点は Edmonston 株の6.59に対してAK-1株では7.42と、 より塩基性になっていた.

IV 考察

われわれはこれまで麻疹ウイルスの変異について検討 してきたが、今回は血球凝集のみならず、細胞への感染 に重要な役割を果たすHA蛋白について遺伝子の構造を 図5 AK-1株とEdmonston株のHA蛋白2次構造の比較

The secondary structures were calculated using a published computer algorithm (13) and plotted graphically over the entire amino acid sequence. Three changes in the reverse turn are indicated as (1) to (3). Open circles indicate potential N-linked glycosylation sites. The closely glycosylated region is boxed.

解析した. AK-1株と Edmonston 株との比較では 塩基配列, アミノ酸配列ともにホモロジー97%と高い相 同性を示した. これは一見, 大した違いがないように思 えるが, 細かく検討するといくつかの重要な変異が含ま れていることがわかった. 第一に, 416番目のアミノ酸 がアスパラギン酸からアスパラギンに換わったことによ る新たな糖鎖付加部位の出現がある. 糖鎖は糖蛋白の生 物学的活性に重大な影響を及ぼす因子の1つであるので, この変異が麻疹ウイルス変異株の性状に寄与している可 能性は高いと考えられる. また, 18ヵ所のアミノ酸置換 のうち13ヵ所が米国で同時期に分離された Chicago – 1株と一致していることは, このような変異が世界的規 模で起こっていることを示唆している.

アミノ酸配列から予測されるHA蛋白の2次構造を比 較すると、AK-1株では3カ所において折れ曲がり構 造の消失が認められた.このうちの一つは、168~240番 アミノ酸残基の糖鎖密集領域に位置していた.最近の合 成ペプチドを使った研究では185~195番アミノ酸残基の 領域が麻疹ウイルスの中和抗原部位となっていることが 報告¹⁵⁾されている.上記の2次構造の変異はこの領域 の近傍にあり、今後の流行を予測する上で重要と考えら れた.

今後は、今回得られた遺伝子配列を基に従来株と変異 株の迅速鑑別法(PCR法の応用)を開発し、診断に役 立てるとともに、年代別、地域別の変異の進行状況を比 較検討する予定である.

B95 a 細胞を分与いただいた国立予防衛生研究所ウイ ルス製剤部の小船富美夫先生、SSPEのHA遺伝子を 分与いただいた筑波医学実験用霊長類センターの吉川泰 宏先生に深謝いたします.

V 文 献

- 1) Saito H, et al. Isolation and characterization of the measles virus strains with low hemagglutination activity. Intervirology 1992; 33:57-60.
- 2) Kobune F, Sakata H. Sugiura A. Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol 1989;64: 700-705.
- 3) MacDonald R J, et al. Isolation of RNA using guanidinium salt. In : Methods in enzymology, 1987; 152 : ed. J. N. Abelson, M. I. Simon. London : Academic Press, 219-226.
- 4) Sambrook J, Fritsch E F, Maniatis T. Selection of poly(A)* RNA. In : Molecular Cloning, 2 nd edition, 1989; ed. J. Sambrook, E. F. Fritsch T. Maniatis. New York : Cold Spring

Harbor Laboratory Press, 7.26.

- 5) Gubler U, Hoffman B J. A simple and very efficient method for generating cDNA libraries. Gene 1983; 25: 263-269.
- 6) Feinberg A P, Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 1983; 132: 6-13.
- 7) Schaap A P, Akhavan H, Romado L J. Chemiluminescent substrates for alkaline phosphatase : Appli cation to ultrasensitive enzymelinked immunoassay and DNA probe. Clin Chem 1989; 35: 1863-1864.
- 8) Pollard Knight D, et al. Nonradioactive DN A detection on southern blots by enzymatically triggered chemiluminescence. Anal Biochem 1990; 185: 353-358.
- 9) Alkhatib G, Briedis D J. The predicted primary structure of the measles virus hemagglutinin. Virology 1986; 650: 479-490.
- 10) Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T 4. Nature 1970; 227: 680-685.
- 11) Glossmann H, Neville Jr D M. Glycoprotein of cell surfaces. J Biol Chem 1971; 246: 6339-6346.12)
- 12) Rota J S, et al. Genetic variability of the measles virus hemagglutinin. Virology 192;
 188:135-142.
- 13) Garnier J, Osguthorpe D J, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 1978; 120: 97-120.
- 14) Kyte J, Doolittle R F. A simple method for displaying the hydrophobic character of a protein. J Mol Biol 1982; 157: 105-132.
- 15) Mäkelä M J, Lund G A, Salmi A A. Antigenicity of the measles virus hemagglutinin studied by using synthetic peptides. J Gen Virol 1989; 70: 603-614 1989.