井島 辰也 大畑 博正 成田 理

1 はじめに

秋田市における降水の成分濃度等について は、昭和58年度より調査を実施してきており、 これまでの調査結果によれば、季節によ り差はあるものの、降水が雨、雪の状態で採 取されたことに関わらず、おしなべて市街地 の降水のpHは、市街地の後背地のそれより も高く観測されてきている。この原因として、 市街地地域では地表付近の浮遊粉塵による酸 性雨の中和現象によるところが大きいとされ てきた。

そこで市街地において、地表付近から発生 する浮遊粉塵の影響が少ない高層部と影響の 大きい地表付近とで、同時に降水を採取する ことにより、高度差による成分濃度等の差を 明らかにし、市街地での降水酸性化機構を把 握するため調査を行った。

2 調査方法

2.1 調査期間

平成2年6月~平成3年3月

2.2 調査地点

秋田市街地で異なる高度で2地点を選び、 降水の採取地点とした。

L地点 地上高約 8m ビル屋上

H地点 地上高約 60m ビル屋上

調査地点は、秋田市の市街地の中心部に位置し、ビルや商店街が密集している。西方の 日本海まではおよそ5kmである。L地点とH 地点の水平距離はおよそ150mである。

2.3 降水の採取方法

2.3.1 ろ過式採取

酸性雨等調査マニュアルに準じ、ろ過式 採取装置を自作し、原則として月曜日から月 曜日までの1週間、採取面を開放状態のまま 降水を採取した。12月下旬以降は、融雪及び 凍結防止のため、上記装置外周にシリコンチ ューブヒーターを巻き、サーモスタットで温 度制御を行い緩やかに加温した。

2. 3. 2 初期降水分取

小笠原計器製R-150型を用い、1降水(降 水から次の降水までの時間が3時間を越えた 場合、別の降水とした。)の降り始めから1mm 単位で5ステージと、それ以降の全量との6 区分で採取した。採取した降水は、直ちに各 ステージ毎にポアサイズ0.8μmのメンブラ ンフィルターでろ過し、試料とした。採取期 間は平成2年6月から12月までである。

2. 4 調査項目

ろ過式採取及び初期降水分取とも、次の10 項目について、酸性雨等調査マニュアルに準 じて分析を行った。降水量は留水量を補集面 積で除して求めた。

pH, EC, SO₄²⁻, NO₃⁻, Cl⁻, Na⁺, K⁺, Ca²⁺, Mg²⁺, NH₄⁺

3 調査結果及び考察

3.1 ろ過式による降水

3.1.1 降水成分濃度

調査期間中、ろ過式採取方式ではL地点及 びH地点でそれぞれ38試料を採取した。降水 量により重み付けした平均成分濃度(以下、

地	点	月	降水量 mm	pН	EC µS∕cm	SO 4 mg∕ℓ	NO ₃ mg∕ℓ	Cl− mg∕ℓ	Na ⁺ mg∕ℓ	K⁺ mg∕ℓ	Ca ²⁺ mg∕ℓ	Mg ²⁺ mg∕ℓ	NH₄ mg∕ℓ
		7	259	5.01	20.5	3.23	1.10	1.09	0.55	0.11	0.95	0.09	0.81
		8	128	4.62	22.2	3.06	1.15	0.91	0.59	0.10	0.41	0.08	0.59
		9	273	5.06	11.5	1.29	0.63	0.61	0.40	0.09	0.33	0.06	0.26
		10	130	4.91	28.8	2.23	0.87	3.44	2.03	0.14	0.31	0.27	0.41
L地	点	11	194	4.79	88.3	4.92	0.89	18.92	10.14	0.43	0.68	1.34	0.42
		12	170	4.86	97.0	6.15	1.40	20.00	10.80	0.45	1.45	1.52	0.65
		1	109	5.59	118	6.70	1.01	24.74	14.02	0.55	2.35	2.08	0.48
		2	142	4.93	56.9	4.30	0.84	9.52	5.36	0.22	1.10	0.76	0.38
		3	74	5.19	65.0	5.71	2.26	10.89	5.99	0.24	2.38	0.82	0.59
		平均		4.93	50.3	3.81	1.03	8.74	4.82	0.24	0.94	0.67	0.51
		7	261	4.63	26.3	3.38	1.14	1.08	0.55	0.12	0.33	0.08	0.84
		8	122	4.62	25.0	3.09	1.18	1.09	0.73	0.10	0.50	0.09	0.56
		9	278	4.91	13.4	1.33	0.64	0.74	0.47	0.10	0.14	0.06	0.26
		10	132	4.79	30.5	2.38	0.90	3.55	2.06	0.14	0.26	0.28	0.39
H地	点	11	188	4.87	116	5.90	0.95	27.26	14.33	0.58	0.90	1.93	0.43
		12	163	4.80	111	6.68	1.50	23.67	12.82	0.54	1.30	1.76	0.68
		1	114	4.92	123	6.84	1.12	26.92	15.02	0.57	1.53	2.09	0.46
		2	146	4.70	63.0	4.34	0.87	10.46	5.94	0.26	0.81	0.82	0.37
		3	80	4.96	81.1	6.80	2.42	12.63	7.22	0.31	2.44	1.11	0.56
		平均		4.78	58.8	4.11	1.08	10.57	5.78	0.28	0.74	0.80	0.51

表-1 ろ過式一週間採取の降水成分平均濃度

表-2 ろ過式一週間採取の隆水成分間の単相関

成分	S O 4 ²⁻	N Q3 ⁻	C1 -	Na ⁺	K+	Ca ²⁺	Ma ²⁺	NH4 ⁺	nss S0 4 ²⁻	nssCa ²⁺	H +
SO_{4}^{2-}		0.701	** 0.808	** 0.834	** 0.865	0.706^{**}	** 0.854	** 0.488	** 0.796	** 0.517	0.293
NO ₃	** 0.649		0.217	0.268	0.356	0.521 **	0.311	** 0.585	** 0.906	** 0.505	** 0.566
C1	** 0.841	0.230		** 0.995	** 0.976	** 0.543	** 0.988	0.121	0.290	0.272	-0.079
Na ⁺	** 0.841	0.226	** 0.997		** 0.983	** 0.549	** 0.997	0.140	0.330 [*]	0.278	-0.045
K ⁺	** 0.871	0.316	** 0.979	** 0.979	$\overline{}$	** 0.528	** 0.980	0.234	* 0.401	0.260	0.062
Ca ²⁺	0.636	0.357	** 0.493	** 0.491	** 0.450		** 0.573	0.167	** 0.606	** 0.955	-0.183
Mg ²⁺	** 0.848	0.230	** 0.989	** 0.996	** 0.973	** 0.515		0.154	* 0.367	0.306	-0.037
NH ⁺	** 0.503	** 0.673	0.127	0.119	0.236	0.066	0.123	\square	** 0.682	0.143	** 0.421
nssSO42-	** 0.836	** 0.867	** 0.410	** 0.405	** 0.478	0.576	** 0.421	** 0.729		** 0.580	** 0.552
nssCa	0.511	** 0.340	0.323*	0.320	0.279	** 0.982	0.347 [*]	0.047	** 0.539		-0.194
Н +	0.234	** 0.510	-0.050	-0.047	0.085	-0.274	-0.061	** 0.492	** 0.442	-0.288	
注) * 危険率 5 % で有意、* * 危険率 1 % で有意											

L地点

単に平均濃度という。)を表-1に、各成分間 の単相関を表-2に示した。降水量により、 成分濃度は大きな変動を示すことが多いが両 地点間で降水量に差は殆ど無く、成分濃度を 比較する上での支障は無い。

pHについては、全試料の平均濃度ではL 地点で4.93、H地点で4.78と、高度の高い方 が低い値を示した。月を単位とした時系列変 化(以下、単に月変化という。採取期間が二 月にまたがる場合、採取期間日数の多い方を 含む月に組み入れた。30日換算はしていな い。)を図-1に示した。月平均値について、 H地点では最高4.96~最低4.62と、比較的狭 い範囲での変化であったのに対し、L地点で は最高5.59~最低4.62と変動が大きく、特に 降雪期にH地点より高い値を示した。ま た、pHの1週間値を両地点を通してみた場 合、最高値(7.01)及び最低値(4.15)ともL地 点で観測されており、高度差50mの間でのウ ォッシュアウトによる、降水への様々な成分 の取り込みや、無降水時の乾性降下物による 影響等が伺える。

陰イオン成分の月平均当量濃度の変化を図 −2に示した。全試料の平均では、SO4²⁻が

-66-

L地点で79.4μeq/ℓ、H地点で85.6μeq/ℓ、 Cl-がL地点で247μeq/ℓ、H地点で298μeq/ ℓといずれもH地点が高い値を示している。 月変化でみた場合、11月以降の両地点間の差 が大きい。

非海塩由来の $SO_4^{2-}(Na^+ \epsilon 2 \tau 海塩由来$ $とみなし、海水中の<math>Na^+ \epsilon SO_4^{2-} \epsilon \sigma$ 比か ら海塩由来の割合を求め、降水成分濃度から 差し引いたもの。以下 $nssSO_4^{2-} \epsilon$ 記す。) $\delta SO_4^{2-} \epsilon \sigma$ 当量濃度比の月変化を図-3に示 したが、7~9月の間、 $0.94程度 \epsilon$ 大部分を 非海塩由来で占めていたのに対し、10月以降 この比が低下し、特に11~1月間に0.5以下 にまで落ち込んでいる。

NO₃-はL地点で17.5μeq/ℓ、H地点で 16.6μeq/ℓと殆ど差がなく、月変化パターン でも差は見られない。

主な陽イオン成分の月平均当量濃度の変化 を図-4に示した。陽イオン成分の平均当量 濃度については、Na⁺がL地点で209μeq/ℓ、 H地点で251μeq/ℓ、K⁺がL地点で6.1μeq/ ℓ、H地点で7.2μeq/ℓ、Mg²⁺がL地点で

-67-

55.4µeq/ℓ、H地点で65.6µeq/ℓといずれも H地点が高く、月変化でも11月から1月まで が極めて高い、良く似た傾向を示している。 これはCl⁻の月変化とも一致しており、これ ら月変化パターンが類似している成分相互の 相関が高いこと、図-5に見られるように、 降水中のCl⁻/Na⁺当量濃度比が海水中の当 量濃度比、約1.17に良く一致することから、 これらは海水中の塩分に大きく影響を受けて いることがわかる。また、この影響はL地点 よりも高層のH地点の方がより大きい。

Ca²⁺は、L地点で47.2µeq/ℓ、H地点で 36.8µeq/ℓと、測定した成分(当量値)の中で 唯一L地点の方が高い値を示した。月変化パ ターンでみると7月及び1月にL地点での高

濃度が目立つものの、概ね同じ傾向じある。 非海塩由来のCa²⁺(以下nssCa²⁺と記す。) と Ca²⁺との比の月変化を図一6に示したが、 調査期間を通じ僅かではあるがH地点の方が 低く12~2月はその差がやや開く傾向にある。 また、海塩由来成分量が多くなるこの期間は、 相対的に nssCa²⁺/Ca²⁺比が下がるが、海塩 の影響がより強い日地点でも、12、1月にこ の比が思ったほど下がっていない。渡辺ら は、横浜市内の酸性降下物の鉛直分布調査か ら、地上30m付近での道路粉塵起因のCa²⁺ の影響を指摘しているが、秋田市においては この期間、自動車のスパイクタイヤ使用等に よる道路粉塵起因の Ca²⁺が多くなるため、 地表近くのL地点でこの影響が顕著なことは 当然として、地上60mのH地点においても、 なお道路粉塵起因による Ca²⁺の影響を受け ているものと考えられる。

NH₄⁺はL地点で28.2µeq/ℓ、H地点で 28.7µeq/ℓと差は無く、月変化の傾向及び濃 度でも差は見られない。

3.1.2 成分降下量

両地点の総降下量の月変化を図-7に示した。また Na⁺、nssSO₄²⁻、nssCa²⁺の月変化を図-8に示した。

図-6 nssCa²⁻/Ca²⁺の月変化

図-7 総降下量の月変化

<u>-69</u>

総降下量は11月になると急激に増加し、そ れ以降3月までに漸減している。また、L及 びH地点の差を見ると、7~10月までは殆ど 差は無いが、11月以降3月までの間日地点で の降下量が多く、特に11月では約35%も多く なっている。これらは前項でも指摘した通り 大部分が海塩の影響であり、高層の方がこれ を強く受けるためと考えられる。

各成分の降下量の月変化については、Na⁺、 K⁺、Mg²⁺、及びCl⁻では、何れも7~10月 の間、低い一定のレベルで推移し、11月にな ると急激に増加、それ以降3月までに漸減す るパターンであった。両地点間の差では、11 月以降3月までの間、H地点での降下量が多 く、特に11月が顕著であった。SO₄²⁻は7月 も降下量が多く、それ以降は前述の5成分と 同様の傾向であった。

NH₄⁺、NO₃⁻、及びnssSO₄²⁻では、7月 に最も降下量が多く、さらに12月にも極値を 持つ良く似た月変化を示し、高度による差も 見られなかった。Ca²⁺は、L地点では7月 に近隣のビル解体工事の影響で降下量が高く なるなど、月による高下が目立つが、両地点 とも概ね11月以降に降下量が増え、12~2月 に両者の差が大きい。nssCa²⁺は、月変化の 立ち上がりが12月になることを除けば、 Ca²⁺の傾向と概ね同じであった。

3.1.3 pH に影響を及ぼす成分

pHに影響を及ぼす成分の季節による高度 差を考察するため、3.1.1項で示したように、 北西の季節風が吹き出してくる概ね11月を境 に成分濃度に差が出てくることから, L地点 及びH地点で得られたデータを10月末までに 得られたもの、及びそれ以降と各々19個ずつ (6月採取の2試料を含む。)に分け、便宜上 それぞれ夏期、冬期と区別した。 NO₃⁻/SO₄²⁻当量比(以下、N/S比という。)及びNO₃⁻/nssSO₄²⁻当量比(以下、N/ nssS比という。)を表一3に示した。N/S 比は、調査期間中の全平均値でL及びH地点 とも0.25で差はなく、季節区分毎でも地点間 の差は見られなかった。N/nssS比も0. 32~0.33と同様に差は見られない。季節区分 毎のN/S比の変化は、海塩由来のSO₄²⁻が 増えるため、冬期区分で相対的に低い値を示 すようになる。この傾向は、全国的な調査結 ⁷²の日本海側の傾向と一致している。

表一3季節区分毎のN/S比、N/nssS比

		. , .	• • • •		
地点	Li	地点	H 地	点	
区分	N/S	N/nssS	N/S	N/nssS	
夏	0.31	0.35	0.31	0.35	
冬	0.18	0.31	0.19	0.29	
平 均	0.25	0.33	0.25	0.32	

N/S 比及び N/nssS 比と pH の関係につ いては、種々論 じられているが、本調査 では季節区分毎及び調査期間全体を通じても、 これらの間に明確な関係は見いだせなかった。

各成分濃度(当量濃度)から海塩由来分を除 いたのものを説明変数に、H⁺を目的変数と して重回帰分析(変数増減法、5%F値によ る打ち切り)を行った。その結果は、次に示 す通りであった。

L地点夏期

 $\begin{bmatrix} H^{+} 予 測 値 \end{bmatrix} = -1.53 + 2.03 \times \begin{bmatrix} NO_{3}^{-} \\ (1.23) \end{bmatrix} -3.43 \times \begin{bmatrix} nssMg^{2+}(-0.39) \end{bmatrix} \\ -0.21 \begin{bmatrix} nssCa^{2+}(-0.25) \end{bmatrix} -0.20 \times \\ \begin{bmatrix} NH_{4}^{+}(-0.24) \end{bmatrix}$

 $R^2 = 0.88$

(R²は自由度調整済決定係数、[]中の()内 数値はその成分の偏回帰係数。以下同様。) H地点夏期

[H+予測值] =--1.08+0.36× [nssSO₄²⁻

(0.69)]+0.88×[NO₃⁻(0.55)]-0.42 × [NH₄⁺(-0.52)]

 $R^2 = 0.84$

L地点冬期

 $[H^{+} \tilde{P} \ \bar{P} \$

 $R^2 = 0.79$

H地点冬期

 $[H+予 測 値] = 1.31+0.42 \times [nssSO_4^{2-}-$ (1.12)]-0.25×[nssCa²⁺(-0.91)] - 0.21 × [nssMg²⁺(-0.23)] R²=0.87

これらの結果から、pHを下げる方向に働 く成分としては、それぞれの偏回帰係数の絶 対値の大きさより、夏期区分の地表近くでは NO_3^- が強く作用し、高層では $nssSO_4^{2-}$ と NO_3^- がほぼ同程度である。反対にpHを高 める方向には、夏期区分の地表付近では $nssCa^{2+}$ 、 $nssMg^{2+}$ 及び NH_4^+ が緩やかに働 き、高層では NH_4^+ が効いてきているのがわ かる。また、冬期区分ではL地点及びH地点 とも $nssSO_4^{2-}$ が pHを強く下げる方向に働 き、 $nssCa^{2+}$ が pHを押し上げる方向に強く 働いている。

ただしこの冬期区分のnssCa²⁺は、後述す るように、乾性降下物の影響が少ない初期降 水分取によると、冬期区分に該当する降水で高 度による成分濃度の差がろ過式採取(1週間) の場合ほど大きくないことから、大部分の nssCa²⁺は非降水時に乾性降下物として雨水 採取装置に捕捉され、降水により水溶液中に 取り込まれた可能性が大きい。

本調査の範囲では、前述の通りH⁺当量子 測値の大部分を、NH₄⁺、nssCa²⁺、NO₃⁻及 びnssSO₄²⁻の4成分で説明できることから、 pHを高める側のNH₄⁺、nssCa²⁺の当量値の 和と、pHを下げる側のNO₃⁻、nssSO₄²⁻の当 量値の和の比(以下、(NH₄⁺+nssCa²⁺)/ (NO₃⁻+nssSO₄²⁻)比という。)をとり、こ の月変化を図-9に示したが、図-1に示し たpHと良く一致した月変化傾向が見られる。

3. 2 初期降水分取による降水

3. 2. 1 降水成分濃度

降水を雨として分取できた12月中旬までの 間に、し及びH地点でそれぞれ59降水を採取 できたが、欠測等で有効な対のデータを得ら れなかった13降水を除き、46降水について解 析を行った。各ステージ毎の平均濃度を表-4に、また主な成分当量濃度を図-10に示し た。季節風の吹き出しが始まる10月下旬以降、 西高東低の冬型気圧配置になったとき、ステ ージ1での各成分の取り込み量が極端に大き いため、結果として平均濃度もこれにほぼ従 う形となっている。

-71-

地点	ステージ	рH	E C <u>µS∕cm</u>	SO₄²− mg∕ℓ	mg∕l	Cl− mg/ℓ	Na⁺ mg∕ℓ	K⁺ mg∕ℓ	$\frac{Ca^{2+}}{mg / \ell}$	Mg²+ mg∕ℓ	NH₄+ mg∕ℓ
	1	4.81	72.7	6.47	2.81	11.02	6.24	0.47	2.34	0.89	0.94
	2	4.70	47.6	3.79	1.50	6.81	3.90	0.27	0.82	0.53	0.54
T	3	4.65	39.3	3.26	1.37	5.06	2.85	0.22	0.58	0.39	0.47
L	4	4.70	34.6	2.88	1.11	4.68	2.66	0.20	0.43	0.35	0.44
	5	4.71	28.8	2.53	0.95	3.45	1.98	0.17	0.33	0.26	0.42
	6	4.84	33.0	2.42	0.72	5.09	2.72	0.16	0.31	0.37	0.37
	平均	4.81	36.0	2.76	0.92	5.41	2.95	0.19	0.46	0.40	0.42
	1	4.80	101.1	8.14	3.37	17.74	10.23	0.61	2.18	1.41	1.14
	2	4.71	54.1	4.20	1.69	8.39	4.77	0.31	0.87	0.65	0.59
TT	3	4.64	39.6	3.32	1.39	5.02	2.88	0.24	0.55	0.39	0.52
н	4	4.71	36.7	2.90	1.14	5.27	2.94	0.21	0.46	0.40	0.41
	5	4.71	35.2	2.74	0.98	5.07	2.90	0.20	0.37	0.37	0.40
	6	4.79	23.1	2.20	0.74	2.74	1.49	0.13	0.23	0.19	0.37
	平均	4.77	31.4	2.77	1.01	4.28	2.39	0.18	0.41	0.32	0.44

表一4 初期降水分取による降水成分平均濃度

図―10 pH及び主な成分当量濃度のステージによる変化

pH については、L地点とH地点の間に差 は見られず、ステージのシフトに伴う変化傾 向も同じであった。陰イオン成分では、ステ ージ1及び2で何れの成分もH地点の方が高 い値を示し、ステージ3以降は高度による差 は殆ど見られなかった。ステージのシフトに 伴う変化傾向については、SO4²⁻、NO3⁻及 び Cl⁻ともステージ1から2の間に大きく濃 度が下がり、ステージ2以降ステージ6まで 漸減あるいは横ばいである。

陽イオン成分でも、地点間の関係及びステ ージのシフトに伴う変化傾向について、陰イ オン成分と同様の傾向がみられた。ただし、 Ca²⁺では他の成分と異なり、ステージ1及 び2においても、地点間の濃度差は殆ど見ら れず、全ステージを通じてほぼ同じ濃度変化 を示した。

図―11に各ステージにおける Na+と Cl-の 当量濃度の関係を示したが、ステージによる Cl-/Na+当量濃度比に殆ど差がなく、海水中 の当量濃度比、約1.17に近いこと、ステージ 3 以降の Na+及び Cl-の濃度にほとんど変化 が見られないことから、ステージ1での海塩

由来成分の大部分は、海風塩をウォッシュア ウトにより取り込んだものであり、ステージ 2以降はレインアウトによる取り込まれたも のとと考えられる。

3.2.2 気象因子別の降水成分濃度

前節で述べたように、初期降水分取による 全降水の平均濃度及びステージのシフトに伴 う変化傾向には、高度による顕著な差は見ら れない。そこで、降水をもたらす気象因子 毎に降水を分類し、比較検討には、大まかな 気象因子分類のうち、特徴的な①台風型(台 風が近接したもののみ。直近で温帯低気圧に 変わったものを含む)、②西高東低型を選び、 明らかにこれらに属するもので、ステージ6 までの試料を採取できた降水の平均当量濃度 を用いた。各ステージ毎の平均濃度を表-5 に示した。

pHの各ステージおける変化を図-12に示 した。気象因子別では、台風型の方が高度に よらず西高東低型よりも高い値を示し、同じ 台風型のなかではL地点の方が高かった。い わゆる冬型気圧配置になると、初期降水分取 のステージ1ではNa+が200mg/ℓを越える 場合もあり、Na+濃度の高度による差も大き いことから、一降水個々には海塩成分による pHへの影響も考慮する必要があるが、本 調査における、西高東低型の場合は高度によ る差は見られず、ステージのシフトにかかわ らずほぼ一定の値を示している。

ここでは気象因子を詳細に分類できなかっ たため、他の気象因子による降水の性状を述 べないが、平木らや鶴 留らの指摘と同様 に、台風による降水のpH は、他の気象因子 による降水の平均値に比較して、明らかに高 い値を示した。

陰イオン成分濃度については、ステージ1

気象因子	地点	ステージ	$\frac{nssSO_4{}^{2-}}{SO_4{}^{2-}}$	$\frac{\mathrm{NO_3}^-}{\mathrm{SO_4}^{2-}}$	$\frac{\mathrm{NO_3}^-}{\mathrm{nssSO_4}^{2-}}$	$\frac{nssCa^{2+}}{Ca^{2+}}$	$\frac{\mathrm{NH_4^+}+\ \mathrm{nssCa^{2+}}}{\mathrm{NO_3^-}+\ \mathrm{nssSO_4^{2-}}}$
		1	0.89	0.53	0.60	0.97	1.42
		2	0.89	0.38	0.43	0.95	1.06
	т	3	0.91	0.36	0.39	0.95	0.83
	L	4	0.90	0.36	0.40	0.94	0.86
		5	0.87	0.35	0.41	0.90	0.79
台風		6	0.96	0.35	0.37	0.93	0.49
(n = 4)	Н	1	0.87	0.49	0.56	0.94	0.98
		2	0.88	0.41	0.47	0.92	0.90
		3	0.91	0.37	0.41	0.93	0.66
		4	0.89	0.36	0.40	0.92	0.73
		5	0.90	0.36	0.40	0.91	0.65
		_6	0.96	0.32	0.33	0.85	0.37
		1	0.58	0.39	0.67	0.77	0.84
		2	0.60	0.34	0.56	0.69	0.65
	L	3	0.60	0.28	0.47	0.63	0.55
		4	0.64	0.28	0.44	0.58	0.49
		5	0.65	0.24	0.37	0.57	0.56
西高東低		6	0.60	0.18	0.30	0.30	0.41
(n = 4)	Н	1	0.43	0.31	0.74	0.62	0.75
		2	0.55	0.34	0.63	0.66	0.67
		3	0.60	0.31	0.51	0.60	0.53
		4	0.63	0.30	0.48	0.59	0.55
		5	0.57	0.23	0.41	0.57	0.65
		6	0.61	0.17	0.28	0.35	0.43

表-5 気象因子別各成分当量濃度比

では何れの成分も、西高東低型の方が台風型 よりも高く、同じ気象因子では日地点の方が し地点よりも高い。ステージ2以降は気象因 子別では、SO₄²⁻及び Cl⁻については西高東 低型の方が高いが、NO₃-ではその差が殆ど 無い。また同じ気象因子内での高度による差 は見られない。nssSO₄²⁻/SO₄²⁻当量濃度比 について表-5に示した。台風型で0.9前後、 冬型で0.6程度と気象因子による差が大きい。 台風型では、高度差及びステージのシフトに 伴う差も無くほぼ一定の値を示すが、西高東 低型では第1ステージで日地点の比が低く、 第2ステージ以降はほぼ等しい。

陽イオン成分濃度の各ステージにおける変 化を図ー13に示した。Na⁺、K⁺及び Mg²⁺ については、ステージ1では西高東低型の方 が台風型よりも高く、同じ気象因子では西高 東低型で日地点の方がし地点よりも高いが、 台風型ではその差が殆ど無いか、あっても差 は小さい。ステージ2以降は気象因子別では 西高東低型の方が高いが、同じ気象因子のでは、 高度差及びステージのシフトに伴う差も無く ほぼ一定の値を示している。NH₄+、Ca²⁺に ついては、気象因子及び高度による濃度差に、 これら以外の成分ほど顕著な傾向が見られず、 ステージ1から2の間の濃度差が大きく、ス テージ2以降ステージ6まで漸減あるいは横 ばいであった。

nssCa²⁺/Ca²⁺当量濃度比について表-5 に示した。台風型で0.9を越え、西高東低型 で0.6程度と、nssSO4²⁻/SO4²⁻当量濃度比同 様、気象因子による差が大きい。また西高東

図一12 気象因子別pH及び陰イオン成分当量濃度のステージによる変化

図-13 気象因子別陽イオン成分当量濃度のステージによる変化

,

低型では、地表付近であるL地点のステージ 1で0.77と比較的高く、1週間ろ過式ほどで はないが、道路粉塵によると思われる nssCa²⁺増加が見られた。

N/S 比、N/nssS 比 及 び (NH₄⁺⁺ nssCa²⁺)/(NO₃⁻⁺nssSO₄²⁻)比を表一5 に 示した。N/S 比は、両地点とも台風型の方 が高く、同じ気象因子内ではステージ1を除 き殆ど変わらない。pH とこれらの比の関係 は、台風型ではL及びH地点で、pH と N/ nssS 比との間に、正の相関関係が見られる が、西高東低型ではその関係が明確ではない。

4 まとめ

降水成分濃度の高度による差を見ることに より、秋田市街地における降水の酸性化機構 の実態を把握するため、平成2年7月~平成 3年3月までの間、1週間ろ過式及び初期降 水分取方式による降水の採取を実施した。こ の調査の結果、次のような知見を得た。

- (1) ろ過式1週間採取の降水のpHは、調査 期間中の平均値で0.15、高層よりも地表近 くが高く、月平均値で見ると、1~3月の 間にこの傾向が強い。また、この期間は降 水成分濃度に与える海塩由来成分の影響が 大きいが、この度合いは地表近くよりも高 層の方が強い。
- (2) ろ過式1週間採取の降水成分濃度で算出した降下量は、海塩の影響を強く受ける11月以降に急激に増加し、総降下量では地表近くよりも高層の方が多い。
- (3) ろ過式1週間採取の降水でpHを下げる 方向に働く成分としては、夏期の地表近く ではNO₃⁻が、高層ではnssSO₄²⁻とNO₃⁻ が効き、pHを高める方向には、夏期の地 表付近ではnssCa²⁺等が、高層ではNH₄⁺

が効いている。また、冬期区分では両地点 とも nssSO4²⁻が pH を下げる方向に働き、 nssCa²⁺が pH を押し上げる方向に働いて いる。

- (4) 初期降水分取による降水では、pH については全ステージの平均値及びステージ毎の平均値に、高度による差は見られなかった。
- (5) 初期降水分取による降水を気象要因別に 分類すると、分類毎の差や高度による差が 見られたが、本調査の例数が少ないことか ら、これについては今後継続的な酸性雨の モニタリングを通し、さらに詳しい解析が 必要である。

謝辞

この調査を実施するにあたり、快く調査場 所の提供を頂きました、秋田アトリオンビル ㈱を始め、ご協力頂いた関係各位に、深く感 謝申し上げます。

参考文献

- 1) 信太 穣ほか:本報, No.11, 82(1983)
- 2) 斉藤 学ほか:本報, No.12, 94(1984)
- 3) 斉藤 学ほか:本報, No.13, 69(1985)
- 4) 斉藤 学ほか:本報, No.16, 55(1988)
- 5)酸性雨等調査マニュアル(改訂版):平成
 2年3月,環境庁大気保全局
- (6) 渡辺善徳ほか:横浜市公害研究所報, No.13, 19(1989)
- 7)酸性雨対策調査報告書:平成2年1月, 酸性雨対策検討会大気分科会
- 8) 正賀 充ほか:兵庫県立公害研究所研究 報告:No.22, 17(1990)
- 9)玉置元則ほか:大気汚染学会誌,26,1 (1991)

- 山口幸祐ほか:大気汚染学会講演要旨 集,第32回,383(1991)
- 11) 平木隆年ほか:大気汚染学会講演要旨 集,第30回,348(1989)
- 12) 鶴田治雄ほか:大気汚染学会講演要旨 集,第32回,392(1991)