複数点煙源の大気拡散予測

- プルーム型拡散式による拡散予測-

1 はじめに

SO_x及びNO_xの拡散予測に関しては、総量 規制マニュアル^{1.2)}に方法が明示されており、 高橋³⁾は短時間平均濃度予測をパーソナルコ ンピューターで行っている。

マニュアルには、物理モデルとして有風時 には正規型プルーム式、無風弱風時にはパフ 式が使用されている。

本県においてもこれらをもとに、パーソナ ルコンピューターによる有風時の1時間平均 濃度予測について検討したのでその概要を報 告する。

2 使用機器及び使用言語

使用機器 PC9801シリーズ 使用言語 DOS-BASIC

3 計算手法

3.1 拡散式

点煙源より風下方向を x 軸、 x 軸と真角に y 軸、高さ方向を z 軸とすると、任意の地点 (x, y, z)における濃度は、有風時(U> 1 m/s) のプルーム式により $C(x, y, z) = \frac{Q}{2\pi g y \sigma z} U^{exp}(-\frac{y^2}{2\sigma z^2}) exp(-\frac{(z-He)^2}{2\sigma z^2}) + exp(-\frac{(z+He)^2}{2\sigma z^2}) \times 10^{\circ}$ (1) 地上濃度は z = 0 より $C(x, y, o) = \frac{Q}{\pi g \sigma z U} exp(-\frac{y^2}{2\sigma z^2}) exp(-\frac{He^2}{2\sigma z^2}) \times 10^{\circ}$ (2) と表わされる。 ここに、 x、y、z:距離(m) C:濃度(ppb) Q:煙源強度(煙源から単位時間 当り排出される汚染物質の 量)(Nm^s/s)

U:煙突頭頂部における風速(m/

He:有効煙突高(m)

s)

σ_y: У軸方向の拡散パラメータ (m)

佐々木 誠

σ_z: z軸方向の拡散パラメータ
 (m)

また、複数点煙源の場合は、各点源からの 濃度が重合できる条件においては、

$$C(\mathbf{x}, \mathbf{y}, \mathbf{o}) = \sum_{i=1}^{N} C_{i}$$

$$\xi \neq \xi \geq 0$$
(3)

ここに、

C₁: 点煙源iによる地点 (x, y, o) にお ける濃度

N:点煙源数

3. 2 U、He、*σ*_y、*σ*_zの値の設定

(1) 風速Uについて

接地境界層において、風速は高度(z)と対 数関係にあるが、実用的には次式(べき法則) が用いられている。

 $U = Us (z/z_s)^{P}$ (4)

U: 高度 z (m) における風速 (m/s)

- Us:高度 z_s(m)における風速(m/s)
 以下の計算においてz_sは大気汚染常
 時監視測定局の測定高10mを使用。
- P:大気安定度と地表面の起伏によるファクター。
 中立時の平均的な値0.14(1/7)を使

用。

- (2) 有効煙突高(He)
- 大規模煙源(Q_H≥ 2×10^ecal/s)の場合 Moses and Carsonの式¹⁾を用いる。

-94-

 $He = (C_1 V_S D + C_2 Q_H^{1/2}) U^{-1}$

ここに、

Q_H:排出熱量

 $(cal/s) = \rho \cdot Q \cdot Cp(T_G - T_s)$

- Cp:定圧比熱
 - (0.24 cal/gK)
- Q:単位時間当りの排ガス量(Nm³/s) =<u>#</u>D²Vs
 - 4 . .
- D:煙突径(m)
- Vs:煙の排出速度(m/s)
- ρ:排ガス密度(g/m³)
 空気の密度と等しいとすれば、
 ρ=0.001293/(1+0.0036T)⁴)
- T_G:排ガス温度(℃)
- T_s:地表温度(℃)
- $C_1 \cdot C_2$: 昼間は安定度中立として

C₁=0.35、C₂=0.171を使用

 ・中小規模煙源(Q_H<2×10^ecal/s)の場
 合

CONCAWEの式¹⁾を用いる。

$$He = 0.175 Q_{H^{1/2}} U^{-3/4}$$
 (6)

 ③ ダウンウォッシュ、ダウンドラフトの 場合

U>Vs/2の場合は、ダウンウォッシュま たは、ダウンドラフトが起こるとし、

He=Ho (実煙突高) (7)

(3) 拡散パラメータ(σ_y、 σ_z)

 σ_{y}, σ_{z} はPasquill-Giffordの近似式($\sigma = \gamma x^{\alpha}$)を用いた。

なお、Pasquill-Giffordのパラメータは、評 価時間が数分程度であるので、特に水平方向 の拡散パラメータについては(8)式⁵⁾を用い1 時間値に補正した。

 $\sigma_{y_2} = (t_2/t_1)^{1/4}$ (8)

ここで、Pasquillの評価時間 $t_1 = 6 \min$ とす れば、1時間値($t_2 = 60\min$)は、 $\sigma y_2 = 1.78\sigma y_1$ となる。

(5)

各安定度におけるσ_y、σ₂は表−1のとおり である。

3.3 予測対象地域のメッシュ区分

予測対象地域の任意の地点を原点にとり、 E-W方向を×軸、N-S方向をУ軸とし、 対象地域に×У座標系を設定する。次に、× 軸方向、У軸方向に任意の範囲を設け、任意 のメッシュ数に区分する。

メッシュサイズを小さくすることにより、 各格子点の計算精度はよくなるが、計算時間 が多くなるので、注意が必要である。

図1は、秋田市内にE-W方向10km、N-S方向10kmの対象域を設けたものである。

秋田市へ10km四方の予測対象域を設定

-95-

表一1 Pasquill-Gifford図の近似式 ($\sigma(x) = \gamma x^{\alpha}$)

	r		Y		Derry
σ_y, σ_z	安定度	α	γ	$\gamma'_{y}(=1.78\sigma_{y})$	Downwind Distance(Meters)
		0.901074	0.425809	0.757940	0~ 1,000
		0.850934	0.602052	1.07165	1,000∼ ∞
	Ъ	0.914370	0.281846	0.501686	0~ 1,000
	D J	0.865014	0.396353	0.705508	1,000∼ ∞
		0.924279	0.177154	0.315334	0~ 1,000
_		0.885157	0.232123	0.413179	1,000∼ ∞
O _y	D J	0.929418	0.110726	0.197092	0~ 1,000
	D J	0.888723	0.146669	0.261071	1,000∼ ∞
	F	0.920818	0.0864001	0.153792	0~ 1,000
	E }	0.896864	0.101947	0.181466	1,000∼ ∞
	E (0.929418	0.0553634	0.0985469	0~ 1,000
	L L	0.888723	0.0733348	0.130536	1,000∼ ∞
	[1.12154	0.0799904		0~ 300
	A {	1.51360	0.00854771		300~ 500
		2.10881	0.00211545		500~ ∞
	р∫	0.964485	0.127190		0~ 500
	D {	1.09356	0.0570251		500~ ∞
	C	0.917595	0.106803		0~ ∞
	(0.838628	0.126152	-	0~ 2,000
	$ \begin{bmatrix} C-D \\ D \end{bmatrix} $	0.756410	0.235667		2,000~10,000
		0.815575	0.136659		10,000∼ ∞
		0.826212	0.104634		0~ 1,000
σz		0.632023	0.400167		1,000~10,000
		0.555360	0.810763		$10,000 \sim \infty$
	- (·	0.776864	0.111771		0~ 2,000
	D-E	0.572347	0.528992		2,000~10,000
		0.499149	1.03810		$10,000 \sim \infty$
	(0.788370	0.0927529		0~ 1,000
	E	0.565188	0.433384		1,000~10,000
		0.414743	1.73241		$10,000 \sim \infty$
		0.784400	0.0620765		0~ 1,000
	F {	0.525969	0.370015		1,000~10,000
		0.322659	2.40691		$10,000 \sim \infty$

 4 任意風向に対する観測点の座標変 換⁶⁾

図2に示すように、煙源S₁の座標を (x₁, y₁)、観測点Rの座標を (x₀, y₀)とし、今Siに おける風向を仮にWSW (方位角 φ_1 =2.74 rad) とすると、

-96-

原点oをo'に移動し、座標軸を $\varphi_1 + \frac{\pi}{2}$ 回転したものが、風下方向を x_1 '軸とした新しい座標系となる。新しい座標系における $R(x_{oi}, y_{oi})$ は、

$$\begin{aligned} \mathbf{x}_{o1} &= -(\mathbf{x}_{o} - \mathbf{x}_{i}) \sin \boldsymbol{\varphi}_{i} \\ &- (\mathbf{y}_{o} - \mathbf{y}_{i}) \cos \boldsymbol{\varphi}_{i} \\ \mathbf{y}_{oi} &= (\mathbf{x}_{o} - \mathbf{x}_{i}) \cos \boldsymbol{\varphi}_{i} \end{aligned} \tag{9}$$

$$-(\mathbf{v}_{o}-\mathbf{v}_{i})\sin\boldsymbol{\varphi}_{i}$$
 (10)

となり、(2)式で濃度を求める。

- 以上のことをもとに、
- (1) 複数点煙源による特定観測点の地上濃
 度
- (2) (1)の場合における各格子点の濃度の算 出及び立体表示
- (3) 等濃度地点の算出
- について予測できるプログラムを作成した。 そのフローチャートは次のとおりである。

なお、等濃度点は内挿法により求める。

Pasquillの階級をA-Fで入力?	:A
地上の温度は(°C)?	:15
煙頂の数は?	:1
注示の奴は、	• 1

風速(m/s)の人力 :2 SOxの排出量(Nm3/S) :0.0214 実煙突高(m)の入力 :150 排力入定度(m)の入力 :30 煙突径(m)の入力 :3.4 排力入温度(C)の入力 :140	
---	--

Receptor 座標(X0,Y0)の入力

:-1400,1200

図一3 入力画面

4 計算結果

例として図1の煙源1及び煙源2について 大気安定度の違いによる拡散の状況等を調べ た。

4.1 煙源データ

計算で用いた煙源のSO_x排出量等の値は表 2のとおりである。

 4.2 大気安定度の違いによる拡散予測 Meadeの安定度分類は表3¹⁰のとおりであ
 り、このうち、安定度A(強不安定)、安定度
 D(中立)、安定度F(並の安定)における拡 散状況について計算した結果を示す。

なお、計算にあたっては、発生源として煙 源1、風向はNW、メッシュサイズは100m× 100mとした。また、濃度分布の立体表示に際 し、濃度は計算対象地域内の最大濃度(C max)で無次元化した濃度C(C=C(x,y)/ Cmax)で表わした。

図4及び図5は、安定度Aにおける濃度分 布及び等濃度図である。煙源近くの(-3,900 m、3,800m) 地点にCmaxが現われている。

図6及び図7は、安定度Dにおける濃度分 布及び等濃度図であるが、影響の現われる地 域は煙源よりも2,000m以上離れており、その

表一2 煙源データ

	座 標 (x(m)、y(m))	SO _x 排出量 (N㎡/s)	実煙突高 (m)	煙突径 (m)	排ガス速度 (m/s)	排ガス温度 (℃)
煙源1	(-4,300, 4,200)	0.0214	150	3.4	30	140
煙源2	(-3,600, 2300)	0.0104	95	2.4	20	190

表一3 Meadeの安定度分類(日本式に修正したもの)

	Н		中			夜	間
地上風速	日射量cal/cm³/hr		-	暈	上層雲(5~ 10) 中・下	舟 早	
m/s	強 >50	並 49~25	弱 <24	(8-	~10)	ID 中 下 層 雲 量 (5~7)	$\stackrel{\pm}{(0 \sim 4)}$
< 2	Α	A∼B	В	I)	—	_
$2 \sim 3$	A∼B	В	C	I)	Ε	F
3~4	В	B ~ C	C	I)	D	Е
$4 \sim 6$	C	C ~ D	D	I)	D	D
> 6	C	D	D	II)	D	D

濃度も小さい。

図8は、安定度Fにおける濃度分布を示し ているが、安定度Dに比べてさらに離れた地 域にわずかに影響が現われている。

4.3 複数点煙源による拡散予測

大気安定度Dのもとで、煙源1及び煙源2 での風速を5m/s、風向をそれぞれNW、WN Wとした時の拡散予測は図9及び図10に示す とおりである。

これらの図から、両煙源の重合された汚染[・]の影響をみることができる。

図-5 安定度Aにおける等濃度図

-98-

図-6

安定度Dにおける濃度分布の立体表示 (U= 5 m/S, Cmax=4.8ppb, (xmax, ymax)= (0,-100)

図一7 安定度Dにおける等濃度図

 $\mathbb{X}-8$

安定度Fにおける濃度分布の立体表示

5 まとめ

近年普及の著しいパーソナルコンピュータ ーにより、プルーム式の拡散予測を試み、次 のような結果を得た。

(1) 複数点煙源からの汚染濃度が重合でき る条件においては、煙源ごとに任意の風向を 有する場合でも任意観測点及び予測対象地域

図-10 2つの点煙源による等濃度図

内の濃度分布の予測が可能である。

予測対象範囲は、拡散パラメータや後述の 計算精度に問題はあるが、数百メートルない し、十数キロメートルの範囲に設定できる。

(2) プルーム式で使用した、水平・鉛直方向の 拡散パラメータは風下距離の関数(σ=γx°)で あるので、予測対象地域のメッシュサイズを 小さくすることにより、予測精度は良くなる。 安定度Aの場合は、煙源の近くで濃度が大き くなるので、特にメッシュサイズが予測精度 に大きな影響を与えることとなる。しかし、 安定度Aの場合、実測値と特に大きな違いが でるとの報告⁷¹もあるので、安定値Aへの適 用は慎重を期す必要がある。 (3) BASIC言語はFORTRAN言語に比べ て、演算速度が劣るので、メッシュサイズを 小さくし精度をあげようとした場合、演算時 間が多くかかることになる。しかし、BASIC 言語はグラフィック表示がし易く、拡散現象 のような空間的広がり(分布)を示すものを 立体的に表現でき、より具体的なイメージを 得ることができる。

今回は、地表(xy平面上)濃度分布の立体 表示を試みたが、座標軸(たとえば図5のy軸 及びC軸)を任意の角度で回転することによ り、あらゆる角度から濃度分布を見ることが できた。

(4) 任意の濃度区分による等濃度地点の算 出と、そのグラフィック表示を行なった。こ の等濃度図は、予測対象地域の一部を拡大し てみることもできる(図4参照)。

(5) プルーム式中の拡散パラメータは、建 物のない平原での実測値をもとにしているた め、実測濃度との整合を調べるに際しては、 フィールド調査により、初期拡散幅の導入や 拡散パラメータの希釈倍率の検討など拡散パ ラメータの適正化が必要となる。

参考文献

- 公害研究対策センター:硫黄酸化物総量 規制マニュアル、環境庁大気保全局大気 規制課編(1985)
- 2)公害研究対策センター:窒素酸化物総量 規制マニュアル、環境庁大気保全局大気 規制課編(1982)
- 高橋 昭則:大気拡散式を解くプログラムの開発、青森県公害センター所報,6,26~38(1983)
- 4) 丸善株式会社:理科年表、物23(439), 昭和63年版
- 5)長沢 伸也ほか:起伏のある地形上における大気汚染予測システムに関する研究 (Ⅳ),大気汚染学 (20, 416~428 (1985)
- 6) 伊藤 昭三:環境工学一大気編入門,朝 倉書店, P180 (1984)
- 7) 岡本 真一ほか:正規型プルーム式と Pasquill-Gifford線図による高煙源について地表濃度予測結果の整合性、第30回 大気汚染学会講演要旨集,P275 (1989)