#### [普及事項]

新技術名:基肥一発型肥料を用いた秋冬どりキャベツ栽培では,追肥作業を省略しても収量・品質を安定して栽培できる(平成24~25年)

研究機関名 農業試験場 生産環境部 土壌基盤担当 担 当 者 石田頼子・武田悟・他2名

[要約] <u>秋冬どりキャベツ</u>の窒素吸収パターンに合うように開発された<u>基肥一発型肥料</u>をキャベツ栽培に用いることにより、<u>全層施肥</u>で追肥作業を省略しても、追肥を2回行った慣行栽培と同等の収量・品質を確保できる。

# [普及対象範囲] 県内全域

#### [ねらい]

一般的な秋冬どりキャベツ栽培では、基肥と追肥を数回行っているが、追肥作業の省略により省力化につながる。そこで、速効性肥料と被膜窒素肥料を組み合わせることにより、追肥を省略し、基肥施肥のみで栽培可能な基肥一発型肥料を、秋冬どりキャベツ栽培へ適応した。

# [技術の内容・特徴]

- 1. 基肥一発型肥料の窒素は、結球始期(およそ30日間)までに外葉を確保し、その後、肥大を助け、色落ちを防ぎながら溶出するように、速効性肥料と被膜窒素肥料(2種類)を配合した肥料となっている。
- 2. 肥料の窒素は、生育初期および結球始期までの定植後約 1 ヶ月で 80%程度溶出し、その 後3週間で90%の溶出を示した(図1)。
- 3. 栽培期間中の地上部の窒素吸収量の推移は、試験区差が見られず、順調に推移した(図 2)。
- 4. 収量調査結果では、両区ともに可販物収量が約 6,000kg/10a であり、基肥一発型の肥料でも、追肥作業のある慣行と同等の収量を確保できた。球の形状にも差はみられなかった(表 1)。

## 「成果の活用上の留意点」

- 1. 試験を行った畑ほ場(表層腐植質黒ボク土)は、土壌改良資材として苦土石灰と堆肥を施用している。
- 2. 慣行区は、基肥窒素 13kg/10a と追肥 2 回 (6+6kg/10a) を行い、基肥一発型肥料区は基肥 25kg/10a のみの施肥体系である。
- 3. 基肥一発型肥料の保証成分:窒素 25% (内, 速効性肥料 51.6%, 被膜窒素肥料リニア型 40 日タイプ 38.7%, シグモイド型 60 日タイプ 9.7%), リン酸 6%, カリ 15%, ホウ素 0.15%
- 4. 基肥一発型肥料 (肥料名:パワフル秋菜) は、2013年から市販されている。

## [具体的なデータ等]

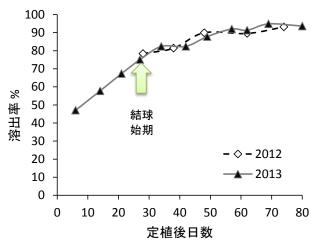



図 1 基肥一発型肥料の窒素溶出パターン 注1)不織布の袋に基肥一発型肥料を入れ, キャベツほ場の畝内に埋設し,経日的に採取 した。

注2)キャベツ定植時に同時に埋設した。

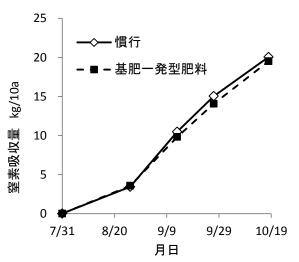



図 2 キャベツの窒素吸収量の推移 (2013) 注 1)生育時期ごとにキャベツの地上部を 採取した。

表1 キャベツ収穫時の可販物収量と形質調査結果

| 試験年度  | 試験区   | 可販物収量  | 可販物重  | 球径    | 球高   | 球密度   |
|-------|-------|--------|-------|-------|------|-------|
|       |       | kg/10a | g/株   | cm    | cm   | g/cm³ |
| 2012年 | 慣行区   | 6,119  | 1,713 | 20.1  | 14.5 | 0.56  |
|       | 基肥一発型 | 5,949  | 1,666 | 20.0  | 14.1 | 0.56  |
|       | 肥料区   | (97)   | (97)  | (100) | (97) | (100) |
| 2013年 | 慣行区   | 6,110  | 1,711 | 20.9  | 12.9 | 0.58  |
|       | 基肥一発型 | 5,851  | 1,638 | 20.4  | 12.4 | 0.60  |
|       | 肥料区   | (96)   | (96)  | (98)  | (96) | (104) |

### 注1)耕種概要

①2012 年: 品種; YR 彩藍 (トキタ種苗(株)), 播種日; 7月6日(128 穴・セル成型育苗), 施肥・ 定植日; 7月27日, 収穫日; 10月12日, 慣行区追肥日; 9月4日と19日, 畝間80cm, 株間35cm

②2013 年: 品種; 彩風 (タキイ種苗(株)), 播種日; 7月5日 (128 穴・セル成型育苗), 施肥・定植日; 7月30日, 収穫日; 10月18日, 慣行区追肥日; 8月22日と9月13日, 畝間80cm, 株間35cm

注2) 球密度 (g/cm³): 可販物の重さを容積で割った値

注3)()内は、慣行区を100とした場合の対照比

# [発表論文等]

なし