リンゴ園におけるクワコナカイガラムシの
生態と防除に関する研究

第3報 クワコナカイガラヤドリバチ（Pseudaphycus malinus Gahan）によるクワコナカイガラム
シの生物防除について

成田 弘・高橋佐治・工藤哲男・佐藤修司

1. 緒 言 83
2. 放射適期は握試験（1965） 84
 1. 材料と方法
 2. 結 果
 3. 考 察

3. クワコナカイガラムシと共棲
 するアリの駆除と防除効果
 (1966－1967) 87
 1. 材料と方法
 2. 結 果
 3. 考 察

IV. 殺虫剤の使用方法と防除効果(1967) ... 94
 1. 材料と方法
 2. 結 果
 3. 考 察

V. 実用化試験（1968－1969） 96
 1. 材料と方法
 2. 結 果
 3. 考 察

VI. 総合考察 100
VII. 総 要 103
VIII. 引用文献 103
IX. 写真説明 106

クワコナカイガラムシはリンゴの有袋果実の 商品性を著しく低下させる有害虫の一つである。
生息場所はリンゴ樹の枝幹面粗皮下、枝幹の割れ目、果実基部、枝の切口、空洞部内、根際地中な
どのほか、果実に袋がかけられると袋の中に潜入するなど、散布薬剤がかかりにくい場所に多い。ま
た、ふ化幼虫の殺虫剤感受性は高いが、発育するにつれて体表を白色より物質ででおおい、卵も白
色緑状のうが物質卵のに包まれるため殺虫剤の効果が期待できなくなる。さらに、この害虫の発
育は生息場所の環境条件に影響されるため、生息場所の違いによってふ化幼虫の発生期に差を生ず
る。筆者らはクワコナカイガラムシの防除体系確立のため、1958－1967年にこの害虫の発生期に差を生ずる
場合におけるふ化幼虫の移動の実態を明らかにし（26）、1958－1964年にこの結果に基づいた殺虫剤散
布による防除法を解明した（27）。

殺虫剤散布による防除はこの方法でおおむね確立出来たが、散布適期のものが狭く、適期を把握するための予察上の技術、薬剤に10日間隔2回の殺虫剤散布に
による既存天敵等の悪影響など諸問題が残されている。このような状況下に、村上（17、18、19）、栃
田（13, 14）、守本（20, 21, 22, 23）らの研究で、本害虫の有力天敵であるクワコナカイガラヤドリバチの大量放飼による防除法が提唱された。天敵利用による害虫防除の例は安松（37, 38, 39）によって広く紹介されているが、リンゴ害虫での実績は少なく、リンゴワタムシ（Eriosoma laniger HAUSMANN）に米国から導入したワタムシヤドリバチ（Aphelinus mali HALDEMAN）で成功した1例だけであった。このヤドリバチは1931年上陸によって導入され、青森県リンゴ試験場害虫研究所の豊島が自然増殖法に成功し（34）、当時リンゴワタムシ的大発生で危機にさらされてきた東北地方のリンゴ栽培を救ったとされている（1）。クワコナカイガラヤドリバチは村上、樋田、守本らによって基礎的研究が行なわれ、守本ら武田薬品グループによって大量増殖、商品化の研究がなされたが、筆者らの試験期間中の製品はヤドリバチの羽化数が均一でなく、その改良研究も含めて試験された。ヤドリバチは生物農薬なので、この利用には種々の制約があり、今までの殺虫剤使用法とは根本的に考え方を変える必要があるが、試験結果はすぐれた防除効果が認められた。この研究は1965～1969年の5年間にわたり、放飼適期（1965）、クワコナカイガラムシと共棲するアリの駆除と防除効果（1966～1967）、殺虫剤の使用法と防除効果（1967）、実用化試験（1968～1969）などを検討し、ここに実用化の見通しを得たので報告する。

この研究にあたり、ご指導いただいた当試験場・今喜代治場長、ご助言や文献のお手配をいただいた九州大学教授・安松京三博士、村上陽三博士、樋田泰司博士、武田薬品・守本陸也博士、試験園をご提供いただいた生産者、ヤドリバチを提供された武田薬品工業株式会社の各位につとしんで感謝の意を表する。

II. 放飼適期は1月（1965）

秋田県におけるクワコナカイガラムシの発生回数は成虫が年2回、幼化幼虫の移動が年3回でまれに2回のこともある。越冬に1～3令幼虫、成虫、卵のうなどの各態で入るが、冬期間に成・幼虫は倒死し、翌春の発生源は卵のみに限られる。卵の発育は越冬場所の気象条件に影響されるため、場所の差による発生間隔が発生期に差が生じ、寄生樹の状態によってかなり発育が不揃いになる（26）。しかし、クワコナカイガラヤドリバチはコナカイガラムシの卵以外の1～3令幼虫、成虫に広く寄生するとしており（13, 19）、防除時期の適用範囲が殺虫剤散布による防除法より広く、実用上有利と推定される。ただヤドリバチが産卵してから寄主が倒死するまでの日数は約10日を要することから、コナカイガラムシの成虫に寄生した場合は死亡するまでの間に少数ながら産卵され（22）、これが次世代の発生源になると予想される。これらのことから、ヤドリバチを放飼する時期の寄主は成虫の発生前で2～3令幼虫期が適当と考えられていた（23）。県内ではこの時期が年3回あり、1回目はコナカイガラムシ越冬世代期の6月中旬～下旬頃、2回目は第1世代期の8月上旬～中旬頃、3回目は第2世代期で越冬直前の10月下旬～11月上旬頃になる。このうち3回目の発生
はリンゴの晩生種の収穫期にあたり、直接その年の防除に関係がないので一応考慮外とし、1回目、2回目に放飼する方法で検討した。リンゴ栽培の現状は着色期を主目的に紙袋を掛けているが、袋掛けの時期は落花25日〜30日頃を適期としている。1回目の放飼時期は袋掛け期前後となり、2回目は袋かけ後になるが、この試験では1回目がヤドリガシ放飼後に新聞紙袋を掛け、2回目は新聞紙袋を掛けた後に放飼し、耕種条件に差をつけて行なった。しかし、試験園環境の手違いから放飼時期がやや遅れ、両試験とも成虫の初発生期に放飼する結果になった。また、両試験園の一部にコナカイガシやアリが共棲していたので、条件を同じくする意味でWay(40)等の報告に基づき、アリをヤドリガシ放飼前に駆除して結果を比較検討した。

1. 材料と方法

越冬世代放飼による防除試験方法

<table>
<thead>
<tr>
<th>年度</th>
<th>No.</th>
<th>試験場所</th>
<th>放飼時期</th>
<th>放飼樹数</th>
<th>養虫場</th>
<th>マミー型</th>
<th>アリの防除</th>
<th>1シート当たり</th>
<th>檜虫数</th>
<th>検査日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96</td>
<td>平塚市平塚町田中宿</td>
<td>7月3日</td>
<td>9</td>
<td>3</td>
<td>非休眠型</td>
<td>6月23日</td>
<td>BHC 5％wp×400</td>
<td>1600頭</td>
<td>9月15日</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>藤原町松尾</td>
<td>8月26日</td>
<td>9</td>
<td>3</td>
<td>非休眠型</td>
<td>アリ不在</td>
<td>1300</td>
<td>9月29日</td>
<td></td>
</tr>
</tbody>
</table>

(1) 越冬世代期の放飼効果

前年コナカイガシムの被害の多かった園の中心部から30年生成木9棟を選んだ。供試樹の品種は国光3樹、旭3樹、インド2樹、ゴールデン1棟で、いずれも風雪害による枝幹の欠損部が多く、樹幹、大枝などに空洞部が出来ており、この中にトビイロアリが営巣していた。アリの駆除は6月23日に行ない、BHC水和剤5%400倍を動力噴霧機で果に灌漑する方法を用いた。ヤドリガシの放飼は7月3日に行ない、1シート当たり2000頭羽化するように調整された紙シート（約8×6cm）を1樹に3シート設けた。シートの取りつけ位置は第1亜枝間岐点の主枝端面で、折り込んだままのシートを鉤で固定した。そして、別に3シートを抜きとって室内におき、羽化数を調査した。放飼時期のコナカイガシムは3令幼虫が最も多く、2令幼虫がこれに次ぎ、少数の成虫、1令幼虫が発生していた。被害果調査は国光2樹、ゴールデン1樹を用い、同園の東側にあった国光3樹を対照区として、9月15日〜27日に行なった。調査方法は1樹から8〜10年枝をランダムに3本選び、全果を除袋し、コナカイガシムの在虫果数を数えた。また、マミー型成虫の調査は7月28日、29日に行ない、枝幹面粗皮下潜入虫を採取して室内飼育で調査した。供試樹の袋掛けは7月4日に行ない、殺虫剤散布は放飼前10日の6月23日から、放飼後22日の7月25日まで行わなかった。

(2) 第1世代期の放飼効果
前年被害の多かった園の中心部にある20年生成木9樹を選んだ。供試樹の品種は国光6樹、紅玉2樹、インド1樹で、いずれも枝幹に欠損部がなく、アリの巣も認められなかった。放飼は8月26日に行ない、試験1と同じ方法で1樹3シート固定した。被害果調査は国光3樹を用い、同園の南側にある国光3樹を対照区にとり、9月29日、30日に試験1と同じ方法で行なった。また、マミー型成長はヤドリグレ放飼後にクラフト紙でバンド誘殺を行なったが、誘引虫数が極めて少なかったので、9月10～15日の間に枝幹粗皮下潜入虫を袋内潜入虫を採集し、室内飼育で調査した。また、供試園の殺虫剤散布は放飼前20日の8月6日から放飼後10日の9月5日まで行なわなかった。

2. 結 果

<table>
<thead>
<tr>
<th>試験番号</th>
<th>果実調査</th>
<th>枝幹面寄生調査</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>枝被害率</td>
<td>枝被害率率(%)</td>
</tr>
<tr>
<td></td>
<td>調査果数</td>
<td>被害果数</td>
</tr>
<tr>
<td></td>
<td>調査虫数</td>
<td>マミー形成虫数</td>
</tr>
<tr>
<td>放</td>
<td>1</td>
<td>366</td>
</tr>
<tr>
<td>飼</td>
<td>2</td>
<td>252</td>
</tr>
<tr>
<td>区</td>
<td>3</td>
<td>291</td>
</tr>
<tr>
<td>対</td>
<td>4</td>
<td>263</td>
</tr>
<tr>
<td>照</td>
<td>5</td>
<td>284</td>
</tr>
<tr>
<td>区</td>
<td>6</td>
<td>329</td>
</tr>
</tbody>
</table>

数値は3区合計値 被害果数LS D 5% =46.90

<table>
<thead>
<tr>
<th>試験番号</th>
<th>果実調査</th>
<th>枝幹面寄生調査</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>枝被害率</td>
<td>枝被害率率(%)</td>
</tr>
<tr>
<td></td>
<td>調査果数</td>
<td>被害果数</td>
</tr>
<tr>
<td></td>
<td>調査虫数</td>
<td>マミー形成虫数</td>
</tr>
<tr>
<td>放</td>
<td>1</td>
<td>151</td>
</tr>
<tr>
<td>飼</td>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td>区</td>
<td>3</td>
<td>136</td>
</tr>
<tr>
<td>対</td>
<td>4</td>
<td>102</td>
</tr>
<tr>
<td>照</td>
<td>5</td>
<td>131</td>
</tr>
<tr>
<td>区</td>
<td>6</td>
<td>74</td>
</tr>
</tbody>
</table>

数値は3区合計値 被害果数LS D 5% =88.87

照区の61.2%に比べてすぐれた防除効果が認められた。また、枝幹面のマミー形成も放飼区で平均94.4%と著しく高かった。第1世代放飼試験の羽化開始はシート取付け2日後の7月5日で、終了は7月16日、羽化時期は11日間と短かった。抜きとり調査による1シート当たり平均羽化数は約1,800頭であった。放飼した結果（第1表）は被害果率0.2%で対

越冬世代期放飼試験の羽化開始はシートの取付け2日後の7月5日で、終了は7月16日、羽化期間は11日間と短かった。抜きとり調査による1シート当たり平均羽化数は約1,600頭であった。放飼した結果（第1表）は被害果率0.2%で対
被害果内では　0％であった。

3. 考察

この2試験は条件の異なる園で行なったが、アリが生息していた越冬世代放飼園はあらかじめ駆除し、殺虫剤の使用も放飼した世代の羽化期に影響がないよう配慮し、条件を同じようにするため努めた。しかし、1シート当りの平均羽化数は越冬世代放飼園が約300頭 多く不揃いであったが、枝幹面のマミー形成率は越冬世代放飼園が約5％ 多かった程度で、ヤドリガチの産卵活動はおそらく似た条件で行なわれたと考えてさしつかえなかった。したがって、両園の防除効果の差はヤドリガチ放飼時期の変更有無に関係深いと考えられる。コナカイガラムシのふ化幼虫は走行による移動性が高く、光を嫌う習性があるため、樹冠内の潜伏場所にもぐるほか、果実に袋がかけられると遺金の部分から葉内に潜入する。秋田県内でのふ化幼虫発生期は、越冬世代が5月下旬頃から移動して樹にとって6月中旬～7月中旬まで不斎に移動し、第1世代は7月中旬から約45日間移動する(26)。越冬世代放飼園は7月3日に放飼して4日に袋かけ、第1世代放飼園は7月始めまでに袋かけして8月26日に放飼したが、越冬世代放飼園ではコナカイガラムシが葉内に潜入する前にヤドリガチが活動し、第1世代放飼園ではコナカイガラムシの越冬世代ふ化幼虫の後期から第1世代ふ化幼虫までが葉内に潜入してしまったからヤドリガチが放飼されたことになる。これが両園の防除効果の差を大きくした原因と考えられる。また、ヤドリガチの葉内潜入能力について第1世代放飼園の結果からみると、放飼区の被害果内マミー形成率は0％であって、ヤドリガチの葉内潜入活動が認められなかったが、枝幹面のマミー形成率は高く、葉外での活動は十分にみられたことが実証された。この原因はヤドリガチの習性によるものか、葉の紙質によって生ずる留金部分の空間の大小による物理的なものか判明しなかった。以上から、ヤドリガチの放飼適期はコナカイガラムシの越冬世代期であることが明らかになったが、これは共同研究の諸結果（2、3、8、11、12、15、16、24、25、36）と一致した。しかし、青森県りんご試験場(2)、岩手県国芸試験場(11)、長野県園芸試験場(24)、宮城県農業試験場(16)、山形県農業試験場移植分場(36)の防除効果に変動が認められた。これはコナカイガラムシの寄生量に比べてヤドリガチの羽化数が不足したためと考察されたが、供試樹のアリの生息が確認されていなかった。筆者らが越冬世代放飼園でガイガラムシと共棲するアリを駆除して均等な防除効果をあげた例から、これらの効果の変動は放飼したヤドリガチの羽化数不足も原因の1つであろうが、アリの生息がおもな原因ではないかと推定した。

III. クワコナカイガラムシと共棲するアリの駆除と防除効果（1966～1967）

アリはアブラムシ類やガイガラムシ類の排泄する蜜(honeydew)を好むため外敵からこれを保護しており、これらの害虫を防除するにはアリの駆除が大きな要因とされている(9、10、40)。コナ
カイヤガラムシは老木や樹風害などが原因で枝幹に欠損の出来た樹に多く寄生し、この欠損部位の木質部や根際地中などにアリが巣を作っていることが多い。アリは巣とコナカイガラムシの生息場所との間を土砂や木くすなどでドーム状トンネルを作り、コナカイガラムシを外気から覆って保護し、トンネルが完璧な時はコナカイガラムシをよくくわえて自分の巣に運ぶこともある。秋田県内のリンゴ樹に生息するアリの種類は明らかでないが、共棲している主な種はトピロケアリ（Lasius niger L.）である。前試験の結果をこれまでの報告から、ヤドリガチを放牧してコナカイガラムシを防除する場合、共棲するアリが生物的障害要因として重要ではないかと想定することに至った。そのため、アリの駆除とヤドリガチ放牧によるコナカイガラムシの防除効果の関係を明らかにする必要があると考え、1966−1967年に5試験を行なった。

1. 材料と方法

全試験園とも前年にコナカイガラムシの被害の多かった木を用い、国光は新規紙袋、インドは長共棲するアリの駆除と防除効果の試験方法

<table>
<thead>
<tr>
<th>年度</th>
<th>No.</th>
<th>試験場所</th>
<th>放牧時期</th>
<th>放牧数</th>
<th>調査数</th>
<th>マミー型</th>
<th>アリの防除</th>
<th>放牧果</th>
<th>調査日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>平戸郡平鹿町鉢領 国産吹水氏園</td>
<td>6月18日</td>
<td>2−3令幼虫（国光）</td>
<td>7</td>
<td>6月14日</td>
<td>6月28日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>鹿角郡八幡平村 田中東太郎氏園</td>
<td>6月15日</td>
<td>2−3令幼虫（国光）</td>
<td>6</td>
<td>6月1日</td>
<td>6月28日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>平戸郡増田町場山の沼 伊藤芳松氏園</td>
<td>6月21日</td>
<td>2−3令幼虫（国光）</td>
<td>7</td>
<td>9月21日</td>
<td>6月28日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>横手市金沢 萩津忠太郎氏園</td>
<td>6月15日</td>
<td>2−3令幼虫（国光）</td>
<td>12</td>
<td>9月21日</td>
<td>6月28日</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

野県小林製袋製作の防除2重袋を掛け、殺虫剤の散布は5月下旬から放牧後2週間で行わなかった。ヤドリガチの放牧時期はコナカイガラムシの越冬世代期で、2−3令幼虫が目立った時期に行ない、試験3、6、7は2−3令幼虫が最も多い時期、試験4、5は2令幼虫が最も多い時期にした。放牧したシートからのヤドリガチ成虫羽化は、いずれも放牧後2−3日から始まり、約10日間で終了した。シートの取つけ位置は果実のない場所に出来るだけ近くつけ、第1rijk分岐点の主枝分岐面に折りたたんだままで折って固定した（第1図）。放牧量はコナカイガラムシの推定寄生量の多少と樹冠の大きさに応じて3～5シート（第3表）にし、推定寄生量は枝幹の切口、空洞部内の外部から見える部分、果実基部等に寄生しているコナカイガラムシの量を観察して暫定的に行なった。トピロケアリが生息していた園は試験3、4、5、6の4園で、試験7には見られなかった。このうち試験3、6の2園では全供試樹に営巣が認められたので、試験3が放牧前4日に硫酸ニコチン800倍、試験6が放牧前6日にBCF水和剤5％400倍をそれぞれ動力噴霧機で巣に灌漑した。試験4、5の2園では1−2樹の供試樹に営巣が認められたが、これにはアリの急避をスポンジ
に浸透させたアリバンド（武田薬品試作品）を1樹に5～6個所巻き、この効果もあわせて検討した。そして、ヤドリガバ放飼後から7月中旬にかけて、全試験の供試樹のアリの駆除効果を確認し、アリが活動していた枝をマークした。被害果調査は1樹から8～10年枝をランダムに3本選び、その全果実を9月下旬～10月始めに調査し、被害は紙袋の埋め合わせで判定した。また、試験3では7月14～19日、試験4では6月25日に供試樹の枝幹面からクワコサイガラムシを採集し、室内でマミー形成率を調査した。さらに、試験3、5、6ではアリの活動していた枝とアリ不在の枝の被害果率を調査し、これの総括からアリが害害要因かどうかを解釈する資料にした。

第3表 取つけシート数の基準

<table>
<thead>
<tr>
<th>シート数</th>
<th>クワコサイガラムシの補定寄生数</th>
<th>嫌避の大きさ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>基本</td>
<td>極大</td>
</tr>
<tr>
<td>4</td>
<td>多</td>
<td>大</td>
</tr>
<tr>
<td>3</td>
<td>少</td>
<td>中</td>
</tr>
</tbody>
</table>

2. 結 果

試験3（第4表）ではヤドリガバを放飼した7樹とも防除効果は認められがたが、このうちNo.2、5の2樹にアリの駆除が不完全であった主枝がそれぞれ1本あり、樹全体の被害果率が12.1～16.4%で、他の放飼樹の被害果率が0.5～9.9%に比べてやや劣った。また、枝幹面採集虫のマミー形成率でも、No.2、5の2樹は55.9～70.4%であったのに比べ、他のアリ駆除が完全であった5樹が88.8～94.9%と高かった。さらに、この2樹の防除効果をアリのいなかった枝とアリのいた枝に分けてみると、No.2樹ではアリのいなかった枝の被害果率6.8%、マミー形成率96.1%に比べ、アリのいた枝の被害果率40.0%、マミー形成率26.7%であった。No.5樹でもアリのいなかった枝の被害果率9.3%、マミー形成率95.5%に比べ、アリのいた枝の被害果率18.7%、マミー形成率17.6%で、いずれもアリのいた枝の被害果率が高く、マミー形成率も劣っていた（第2図）。試験4（第5表）ではNo.2樹にアリバンドを巻いたが、その効果は認められず、10月まで樹上活動が認められた。放飼した6樹のうちアリの活動していたNo.2樹の被害果が13.7%で、他の放飼樹が1.0～7.9%であったのに比べて防除効果が劣った。マミー形成率もNo.2樹が17.6%で、他の放飼樹が60.0～85.7%であったのに比べて著しく劣り、試験3と同じ傾向を伺い得た。この試験3と4の結果から、被害果数と非マミー形成虫数の間に+0.8585（p<0.01）の高い相関関係が認められた（第3図）。試験5（第6表）ではNo.2、5の2樹にアリバンドを巻いたが、その効果は認められず、アリがバンド上に砂土を運び、果とカイガラムシ生息場所との間にトンネルを作って活動していた。放飼した7樹のうち、アリの活動していたNo.2、5の2樹の被害果率が27.3%、49.9%で、他の
アリが生息していなかった放飼樹が0～17.4%であったのに比べて防除効果が劣った。また、この2樹をアリのいない枝とアリのいた枝に分けてみると、No.2樹ではアリのいない枝の被害果率が4.3%に比べ、アリのいた枝が46.2%であった。No.5樹でもアリのいない枝の被害果率が0%に比べ、アリのいた枝が25.8%、92.6%で、いずれもアリのいた枝の被害果率が高かった（第4図）。試験6（第7表）では放飼した12樹のうちアリの駆除が不完全であったNo.5樹の被害果率が29.5%、同じくNo.9樹が13.0%であったのに比べ、他のアリの駆除が完全であった10樹の被害果率が0～3.1%で、アリの駆除が不完全であった樹の防除効果がやや劣った。No.5、9樹をアリのいない枝と、アリのいた枝に分けてみると、No.5樹のアリのいない枝の被害果率が11.0%に比べ、アリのいた枝が25.0%、53.0%であった。No.9樹もアリのいない枝の被害果率が0%、1.0%に比べ、アリのいた枝が38.0%で、いずれもアリのいた枝の被害果率が高く、試験3、5と同じ傾向であった（第5図）。また、7月15日に枝幹面から採集したコナカイガラムシのマミー形成率は96.7%と高く、10月2日に窓の被害果50果から採集したコナカイガラムシのマミー形成率は40.0%であった。試験7（第8表）では全園にアリが生息しなかったが、放飼した12樹の被害果率は0～14.0%で、対照区が39.3～78.6%であったのに比べてすぐれた効果が認められた。そして、この試験3～7の放飼樹で共通した現象は、アリのいない樹の被害果は下垂枝先端部分に多くみられたことであった。

<table>
<thead>
<tr>
<th>試験番号</th>
<th>区所番号</th>
<th>放飼シート数</th>
<th>果実</th>
<th>調査</th>
<th>枝</th>
<th>幹</th>
<th>面</th>
<th>増生</th>
<th>調査</th>
</tr>
</thead>
<tbody>
<tr>
<td>被害果数</td>
<td>被害果数</td>
<td>被害果率（%）</td>
<td>平均被害果率(%)</td>
<td>調査虫数</td>
<td>マミー形成虫数</td>
<td>マミー形成率(%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>②</td>
<td>5</td>
<td>323</td>
<td>8</td>
<td>2.5</td>
<td>79</td>
<td>75</td>
<td>94.9</td>
<td></td>
</tr>
<tr>
<td>放</td>
<td>2</td>
<td>3</td>
<td>265</td>
<td>43</td>
<td>16.2</td>
<td>81</td>
<td>57</td>
<td>70.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>263</td>
<td>26</td>
<td>9.9</td>
<td>107</td>
<td>95</td>
<td>88.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>③</td>
<td>3</td>
<td>196</td>
<td>9</td>
<td>4.6</td>
<td>6.4</td>
<td>73</td>
<td>65</td>
<td>89.0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>354</td>
<td>43</td>
<td>12.1</td>
<td>93</td>
<td>52</td>
<td>55.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>区</td>
<td>6</td>
<td>3</td>
<td>320</td>
<td>2</td>
<td>0.6</td>
<td>61</td>
<td>60</td>
<td>98.4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>371</td>
<td>2</td>
<td>0.5</td>
<td>55</td>
<td>52</td>
<td>94.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>196</td>
<td>52</td>
<td>26.5</td>
<td>95</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>対</td>
<td>10</td>
<td>206</td>
<td>71</td>
<td>34.5</td>
<td>7</td>
<td>2</td>
<td>2.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>照</td>
<td>11</td>
<td>277</td>
<td>52</td>
<td>18.8</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>区</td>
<td>12</td>
<td>192</td>
<td>53</td>
<td>27.6</td>
<td>29.7</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>232</td>
<td>86</td>
<td>37.1</td>
<td>43</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>219</td>
<td>78</td>
<td>35.6</td>
<td>62</td>
<td>1</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

数値は3区合計値 被害果数LSD 5% = 18.79
○：アリ駆除不完全樹

注：第8表は95頁に挿入
第5表 アリの駆除と放飼効果: 試験4（1966）

<table>
<thead>
<tr>
<th>区</th>
<th>放飼番号</th>
<th>果実数</th>
<th>被害果数</th>
<th>被害果数（％）</th>
<th>平均被害果数（％）</th>
<th>枝幹面寄生調査</th>
</tr>
</thead>
<tbody>
<tr>
<td>試験番号</td>
<td></td>
<td>調査数</td>
<td></td>
<td></td>
<td></td>
<td>調査虫数</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>302</td>
<td>3</td>
<td>1.0</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>247</td>
<td>34</td>
<td>13.8</td>
<td></td>
<td>34</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>239</td>
<td>19</td>
<td>7.9</td>
<td>4.9</td>
<td>42</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>315</td>
<td>8</td>
<td>2.5</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>372</td>
<td>7</td>
<td>1.9</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>351</td>
<td>18</td>
<td>5.1</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>381</td>
<td>57</td>
<td>15.0</td>
<td></td>
<td>107</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>468</td>
<td>83</td>
<td>20.3</td>
<td></td>
<td>46</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>355</td>
<td>21</td>
<td>6.3</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>354</td>
<td>35</td>
<td>9.4</td>
<td>12.6</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5</td>
<td>275</td>
<td>29</td>
<td>10.5</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>259</td>
<td>31</td>
<td>12.0</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>365</td>
<td>39</td>
<td>12.8</td>
<td></td>
<td>36</td>
</tr>
</tbody>
</table>

数値は3区合計値 被害果数LSD 5% = 18.94 〇：アリ駆除不完全樹

第2図 試験3の枝別にみたアリの有無と マミー形成率の関係

第3図 非マミー形成数と被害果数の相関

\[Y = 13.62 + 0.7689(x - 17.08) \]

\[r = 0.8585^{**} \]
第6表 アリの駆除と放飼効果：試験5（1966）

<table>
<thead>
<tr>
<th>試験番号</th>
<th>区</th>
<th>放飼シ</th>
<th>一区数</th>
<th>調査数</th>
<th>果実</th>
<th>果実被害</th>
<th>被害果率</th>
<th>平均被害果率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>根</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>111</td>
<td>4</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>260</td>
<td>7</td>
<td>27.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>165</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>190</td>
<td>31</td>
<td>17.4</td>
<td>22.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>335</td>
<td>167</td>
<td>49.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>101</td>
<td>16</td>
<td>9.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>135</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>127</td>
<td>57</td>
<td>43.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>80</td>
<td>21</td>
<td>36.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>150</td>
<td>74</td>
<td>49.3</td>
<td>35.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>99</td>
<td>55</td>
<td>55.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>6</td>
<td>201</td>
<td>22</td>
<td>10.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

数値は3区合計値 被害果数LSD 5% = 29.29
○：アリ駆除不完全樹

第7表 アリの駆除と放飼効果：試験6（1967）

<table>
<thead>
<tr>
<th>試験番号</th>
<th>区</th>
<th>放飼シ</th>
<th>一区数</th>
<th>調査数</th>
<th>果実</th>
<th>果実被害</th>
<th>被害果率</th>
<th>平均被害果率</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>根</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>250</td>
<td>5</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>345</td>
<td>3</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>265</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>364</td>
<td>4</td>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>312</td>
<td>92</td>
<td>29.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>323</td>
<td>10</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>318</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>324</td>
<td>4</td>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>338</td>
<td>44</td>
<td>13.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>324</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>256</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>343</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中</td>
<td>13</td>
<td>317</td>
<td>196</td>
<td>61.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>318</td>
<td>155</td>
<td>48.7</td>
<td>59.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>333</td>
<td>221</td>
<td>66.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

数値は3区合計値 被害果数LSD 5% = 19.73
○：アリ駆除不完全樹 1 - 4樹 新規紙袋掛け調査 5 - 15樹 防虫2重袋掛け調査

第5図 試験6の枝別にみたアリの有無と被害果数の関係

第4図 試験5の枝別にみたアリの有無と被害果数の関係

3. 考察

Flanders（9）、Henry（10）、Way（40）らは体から蜜（honeydew）を排泄するアブラムシやカイガラムシとアリの共棲関係について報告し、アリが外敵から害虫を守るため、共棲している害虫の個体群は共棲しない個体群より繁殖力が大きく、これらの害虫を防除するにはアリの駆除の成否
リンゴ園におけるクワロナカイグラムシの生態と防除に関する研究

が防除効果を左右する重要な要因であることを指摘した。筆者らの試験結果からも、トピロケアリの営巣していたリンゴ樹にヤドリバチを放駄した場合の防除効果は、アリの生息しなかった樹に放駄した場合より明らかに劣り、アリの生息していた樹や枝のマミー形成率は低く、被害果数と非マミー形成虫数の間の正の高い相関関係が認められた。このことは、放駄したヤドリバチのコナカイグラムシに対する寄生活動がアリによって阻害されたためと考えられる。したがって、ヤドリバチを放駄してコナカイグラムシを防除するには、共棲するアリが生物的障害要因として大きく、リンゴの場合もアリの駆除の成否が防除効果を左右する要因であることが明らかになった。アリの駆除法は殺虫剤の巣を洗浄とアリバドによる忌避の2方法で検討したが、アリバドの実用性は劣った。殺虫剤は硫酸ニコチン800倍、BHC水和剤5％400倍の2剤を用い、両剤とも効果が認められたが、BHC剤の方が安定した効果があった。しかし、BHC剤の使用は残留毒の立場から避けねばならず、アリの駆除法についてはさらに検討を加える必要がある。また、トピロケアリがリンゴ樹に営巣する場合、空洞部の木質部に複雑な迷路を作っているため、動力噴霧機で圧力をかけた程度の殺虫剤灌注では巣の内部まで薬剤が達せず、十分な駆除効果が得られない場合もあり、駆除方法の確立も残された問題の一つである。

村上（19）、梶田（13）らはヤドリバチのコナカイグラムシに対する産卵能力を実験し、ヤドリバチ雌1頭の産卵能力は約200個で、寄主の異なる令期では令期のすすんだ方がよく寄生産卵し、1令幼虫には単寄生、2令幼虫以上には発育順に多寄生の度合が高くなると報告した。この結果からすると発育のすすんだ成虫ほどヤドリバチの寄生率が高いことになるが、成虫がマミー化するまで少量ながら産卵し、これが次世代の発生源になるため、成虫の前の3令幼虫にヤドリバチを産卵させるのが適当と考えられる。しかし、自然ではコナカイグラムシの生息場所の条件差から発育が不揃いになり、3令幼虫だけ発生することはなく、実用的には2～3令幼虫が目立つ時期となるだろう。先の試験1では、コナカイグラムシ越冬世代2～3令幼虫発生期で、3令幼虫が最も多く、極少数の成虫が発生した時期、試験3、6、7は同じ発生期で3令幼虫が最も多い時期、試験4、5も同じ発生期で2令幼虫が最も多い時期にそれぞれヤドリバチを放駄した。その結果はいずれの時期でも防除効果が高く、寄主令期選択の巾が広いことが伺われた。また、先の村上、梶田らの実験から、ヤドリバチ雌成虫1頭の産卵能力が限定され、寄主の令期のすすんだものほどよく産卵寄生し、しかも、多寄生であることは、ヤドリバチ雌成虫の倒すコナカイグラムシの数は成虫ほど少なく、1令幼虫ほど多いことを意味する。このことから、コナカイグラムシの幼令期にヤドリバチを放駄した方がよりよい効果をあげることが推察されるが、これに関する実験試験結果はなく、今後検討を要する重要な問題の一つであろう。

アリの生息しない樹や駆除が完全であった樹にヤドリバチを放駄した場合、すぐれた防除効果が認められたが、少数の被害果は一様に下垂枝先端部の果実に多かった。この原因は明らかでないが、
ヤドリガチの活動能力の限界を示したものではないかと考えられる。また、袋内潜入能力については、試験2で新聞紙袋を掛けた被害果実マミー形成率が0%であったのに比べ、試験6の防疫2重袋内マミー形成率が40.0%もあり、袋内潜入活動が認められた。この差の原因も明らかでないが、袋の紙質の違いで生ずる留着部分の障害の大小が原因の一つと思われ、ヤドリガチが潜れる隙間があれば、袋内潜入のコナカイガラウミにも寄生活動をするものと考えられる。

Ⅳ. 被害果の使用方法と防除効果（1967）

ヤドリガチに対する薬剤の影響については、田中（33）、菅原（28、29）、青森県りんご試（4）によって、殺菌剤の影響力は少ないが、殺菌剤と殺ダニ剤の一部が影響力が強く、薬剤によって残効力の長短が大きいことが知られていた。これまで行なった試験1～7で薬剤の残効効力を考慮に入れ、アリの駆除はBHC剤が放飼前7日、硫酸ニコチンが放飼前4日に処理し、放飼後は羽化成虫に影響がないように2週間以上たってから殺虫剤を散布するよう配慮した。しかし、ヤドリガチ羽化期間中に殺虫剤を散布した場合は試験結果が知れていなかったので、1967年にこの試験を行なった。

1. 補料と方法

| 年度 | No. | 試験場所 | 放飼日 | 放飼日数 | 調査日 | マミー数 | アリの防除 | 被害果類 | 調査日 |
|------|-----|----------|-------|----------|--------|---------|------------|----------|
| 1967 | 8 | 佐藤茂実 | 6月12日 | 12 | 6月5日 | 6月22日 |

前年コナカイガラウミの被害の多かった園から40年生から光カメを12樹選んだ。供試樹には全部空洞部が出来ており、トビイロカエリが営巣していたので、6月5日に一時散布機でBHC水和剤5%400倍を果に灌漬し、処理後7日の6月12日にシートを試験3と同じ方法で取りつけた。放飼時期のコナカイガラウミは2～3令幼虫が目立ち、2令幼虫が最も多かった。シートからのヤドリガチの羽化は6月15日から始まり、19日を最盛日に6月25日まで約10日間認められた。放飼した12樹のうち7樹には羽化開始後5日の6月20日、他の5樹には羽化開始後8日の6月23日にスミチオン水和剤25%600倍を3～12等ボルドウ液に混用散布し、新聞紙袋を果実に掛けた。薬剤散布をした6月20日とヤドリガチ羽化最盛日の1日後に6月23日には羽化最盛日の4日後にあたる。被害果調査は試験3と同じ方法で9月22日に行なった。

2. 結果

成虫羽化開始後8日に殺虫剤を散布した区は平均被害果率0.6%ですぐれた効果が認められたが、成虫羽化開始後5日に殺虫剤を散布した区は効果の変動が大きく、平均被害果率25.1%で劣った。
しかし、対照区の平均被害果率 59.7% よりは効果が高かった。

第 8 表 アリの駆除と放牧効果：試験 7 (1967) に

<table>
<thead>
<tr>
<th>区</th>
<th>騎</th>
<th>放牧シ</th>
<th>果実</th>
<th>調査</th>
<th>区</th>
<th>騎</th>
<th>放牧シ</th>
<th>果実</th>
<th>調査</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>374</td>
<td>23</td>
<td>6.1</td>
<td>1</td>
<td>3</td>
<td>292</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>467</td>
<td>4</td>
<td>0.9</td>
<td>3</td>
<td>3</td>
<td>372</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>5</td>
<td>323</td>
<td>37</td>
<td>11.5</td>
<td>4</td>
<td>3</td>
<td>351</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>459</td>
<td>35</td>
<td>7.6</td>
<td>5</td>
<td>3</td>
<td>372</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>354</td>
<td>1</td>
<td>0.3</td>
<td>6</td>
<td>3</td>
<td>382</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>8</td>
<td>382</td>
<td>5</td>
<td>1.3</td>
<td>7</td>
<td>3</td>
<td>428</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>9</td>
<td>528</td>
<td>43</td>
<td>8.1</td>
<td>8</td>
<td>3</td>
<td>382</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>10</td>
<td>360</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>3</td>
<td>382</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>11</td>
<td>382</td>
<td>5</td>
<td>1.3</td>
<td>10</td>
<td>3</td>
<td>428</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>12</td>
<td>360</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>372</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>13</td>
<td>382</td>
<td>5</td>
<td>1.3</td>
<td>12</td>
<td>3</td>
<td>382</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>3</td>
<td>14</td>
<td>382</td>
<td>5</td>
<td>1.3</td>
<td>13</td>
<td>3</td>
<td>382</td>
<td>5</td>
</tr>
</tbody>
</table>

数値は 3 区区合計値
被害果数 L S D 5% = 19.03

3. 考 察

ヤドリバチの羽化消長は 20℃ 定温下で羽化開始後 3 日で約 50%、5 日後で約 95%、7 日後で 100% になり、最盛日は 3 日後で、羽化期間は常温下で約 10 日間とされている(32)。また、産卵は羽化後 2 日までに過半数を終え、6 ～ 7 日後に 90% に達するとされている(19)。この結果で羽化開始後 5 日に殺虫剤を散布した区は、羽化最盛日の 1 日後に殺虫剤が散布されたことになり、産卵が羽化後 2 日で過半数になることから、産卵最盛期前に殺虫剤が散布されたと推定される。スミオン剤のヤドリバチ成虫に対する影響は強く、リンゴ葉に散布処理後に成虫を葉に接触させると 5 日後まで強い殺虫効果があり、7 ～ 10 日後から急速に殺虫力が減退する (7)。したがって、この区の成虫はコナカイガラムシに対する産卵活動の初期に殺虫剤で倒されたと考えられる。また、羽化開始 8 日後
に殺虫剤を散布した区は、羽化最盛日の 4 日後に散布したことになり、産卵活動の最盛期が過ぎてから殺虫剤で倒されたと考えられる。防除効果は後者の方がすぐれた結果を得たが、この差は殺虫剤散布時期のちがいによるヤドリバチの寄生肺炎の差によって生じたものと考えて差支えなかった。そして、羽化開始 5 日後散布区 7 树の防除効果の変動は、供試樹のコナカイガラムシ寄生量の多少、ヤドリバチ羽化期の遲早、産卵条件の適否などによって生じたものと考えられる。ヤドリバチ成虫に対する薬剤の影響は殺虫剤がほとんどないが、殺虫剤の有機磷剤、NAC 剤、フッ素剤、塩素剤などはいずれも薬剤処理直後 3 時間後に接触で高い殺虫力があることが知られていた(28,29,33)。しかし、残効果では薬剤間差が大きく、処理後から影響がなくなるまでの期間が硫酸ニコチンで約 3 日、BHC が 3 ～ 10 日、スミオンが 9 ～ 11 日もある (7)。また、マミーに対する殺虫剤
の影響はスミチオン、ダイアジゾンなどが強いことが知られている（4）。このことから、ヤドリバチを放飼してコナカイグラムシを防除するには、殺虫剤散布が人為的障害要因として重要であり、アリの駆除を含めて、放飼前約7日から放飼後約10日の間は殺虫剤の散布を避けねばならない。

V. 実用化試験（1968～1969）

1965～1967年に行なった8試験の結果から、放飼適期、シートの取りつけ数、取りつけ位置、アリの駆除対策、殺虫剤の使用規制などが定められた。これらを現地の共同防除圏に適用し、総合的に組み立てた実用効果を検討するため、1968、1969年にそれぞれ1試験を行なった。

1. 材料と方法

<table>
<thead>
<tr>
<th>年度</th>
<th>No</th>
<th>試験時期</th>
<th>放飼時期</th>
<th>放飼樹数</th>
<th>調査樹数</th>
<th>マミー型</th>
<th>アリの防除</th>
<th>被害果</th>
<th>調査日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1968</td>
<td>9</td>
<td>6月11～15日</td>
<td>2 ～ 3 令幼虫</td>
<td>92</td>
<td>92</td>
<td>休眠型</td>
<td>リンデン25wp</td>
<td>5月30～6月2日</td>
<td>9月25日</td>
</tr>
<tr>
<td>1969</td>
<td>10</td>
<td>6月9～12日</td>
<td>2 ～ 3 令幼虫</td>
<td>650</td>
<td>325</td>
<td>非休眠型</td>
<td>リンデン25wp</td>
<td>5月30～6月3日</td>
<td>9月25日</td>
</tr>
</tbody>
</table>

薬剤散布方法

<table>
<thead>
<tr>
<th>回数</th>
<th>試験</th>
<th>散布日</th>
<th>試験</th>
<th>散布日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.4</td>
<td>×1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>27</td>
<td>×1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5.17</td>
<td>×500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>×500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6.6</td>
<td>×500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>3-12式</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>23</td>
<td>3-12式</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4.7</td>
<td>×600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>24</td>
<td>3-12式</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.6</td>
<td>×2000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>13</td>
<td>×1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>31</td>
<td>3-12式</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1968年に行なった試験9は、約6haの共同防除圏から前年コナカイグラムシの被害の多かった成木92樹を用いた。その品種の内訳は国光56樹、紅玉2樹、インド26樹、ゴールデン・デリシャス8樹で、国光、紅玉には新聞紙袋、インドには防除袋をそれぞれヤドリバチ放飼後に、ゴールデンには放飼前にハトモン紙小袋、放飼後の7月上旬にその上から新聞紙大袋を2回に掛ける。托ビロケアリが生息していた樹は28樹あったが、これには5月30日から6月2日にかけてリンデン水和剤25

リンゴ園におけるワカナサイプラムの生態と防除に関する研究

％1,000倍を動力噴霧機で巣に灌漑した。しかし、5株は駆除が不完全であり、10月までアリの活動が認められた。供試マミーは試験1～8に用いた非休眠型のもとではなく、長期間貯蔵を目的として作られた休眠型のものを用いたが、6株だけで従来の非休眠型のものを供試して効果を比較した。また、ヤドリグマ成虫羽化開始後3日にDDT水和液20％400倍を5株に散布し、その効果をみた。したがって、試験区は休眠型まみーを用いたもの86株で、そのうち、アリの生息しなかった樹が43株、アリの駆除が完全であった樹が23株、アリの駆除が不完全であった樹が5樹、羽化期にDDT散布した樹が5株、非休眠型まみーをアリの生息しなかった樹に供試したのが5株、無放飼の対照が10株の計6区に分けた。放飼は休眠型のものが6月11日～13日、非休眠型のものが6月15日に行なったが、この時期はコナカイプラムの2～3年若虫が目立ち、2令若虫が最も多くかった。放飼方法は試験3と同じ方法で行なった。被害果は袋の病害汚染で判定し、1株から8～10年枝の結果母枝を3本ランダムに選び、9月25日にその全果について健全果数、被害果数を数え、被害果率を指数に換算して被害率で表示した。薬剤散布は実績表にみられるように、ヤドリグマの第1回成虫羽化時間中の6月15日、6月23日にポルダウ液を散布し、7月4日にハマキソニ幼虫防除のため殺虫剤を散布したが、この時期にはヤドリグマの産卵活動が終わっていた。

被害指数
0 : 1株のうち被害果 0
1 : 1株のうち被害果 5％以内
2 : 1株のうち被害果 10％以内
3 : 1株のうち被害果 30％以内
4 : 1株のうち被害果 50％以内
5 : 1株のうち被害果 80％以内
6 : 1株のうち被害果 80％以上

1969年に行なった試験10は、隣接する3共同除害園約65haから前年にコナカイプラムの被害のあった650株を選び、調査は325株について行なった。調査樹の品種は国光183株、ゴールデン・ダリニウス68株、インディア32株、ふじ18株、その他4株であったが、立木植物のバートレット6株、廿世記1株も用いた。袋は国光、ふじ、バートレット、その他の新聞紙袋、インデアには防除2重袋、廿世紀にはパラフィン紙袋をそれぞれヤドリグマ放飼後に、ゴールデンには放飼前にハットロン紙小袋、放飼後の7月上旬にその上から新聞紙大袋を2重に掛けた。放飼マミーは試験1～8で供試した非休眠型を用いた。トビイログマが生息していた樹は120株あったが、このうち117株には5月30日から6月3日にかけたインデア水和剤25％1000倍を動力噴霧機で巣に灌漑した。しかし、33株は駆除が不完全であった。試験区はアリの生息しなかった樹が181株、アリの駆除が完全であった樹が84株、アリの駆除が不完全であった樹が33株、アリを駆除しなかった樹が9株、無放飼の対照樹が18株の5区に分けた。放飼は6月9～12日試験3と同じ方法で行なったが、この時期はコナカイプラムの2～3年若虫が目立ち、2令若虫が最も多くかった。被害果は袋の病害汚染で判定し、9月25～26日に調査樹1本の全果実に占める被害果を2人で判定し、試験9と同じ指数を用いて被害度で表示した。薬剤散布は実績表のように放飼日の前後にハイバンを1回散布し、放飼後16～19日後にハマキソニ幼虫防除のため殺虫剤を散布した。

2. 結 果
試験9（第10表）では、休眠型供試マミーの1シート当り平均羽化数は500頭弱で、非休眠型供試マミーの約1800頭より非常に少なかった。また、羽化期間も休眠型マミーは約15日を要し、非休眠型マミーの約10日より長かった。しかし、防除効果は平均被害度で、アリの生息しなかった樹が0.35、アリの駆除が完全であった樹が0.83、アリの生息しなかった樹に非休眠型マミーを放飼した樹が0.67でそれぞれの間に差がなく、すぐれた効果が認められた。これに比べ、アリの駆除が不完全であった樹が3.00で、放飼しなかった樹の3.70と差がなく効果が劣り、さらに、羽化期間にD D T剤を散布した樹が4.80と一段劣った。また、ヤドリギを放飼した82樹の取りつけシート数と被害度の関係を第11表に示したが、このうち、アリの生息しなかった樹とアリの駆除が完全であった樹の計66樹について相関係数が0.1331の低い結果を得た。試験10（第12表）では、非休眠型マミーの1シート当り平均羽化数は約1000頭で、製品の予定羽化数2000頭の半数であった。しかし、防除効果はアリの生息しなかった181樹の平均被害度が0.12、アリの駆除が完全であった84樹が0.37とすぐれていた。これに比べアリの駆除が不完全であった33樹が2.94で効果が劣り、さらに、アリを駆除しなかった9樹が3.11で、放飼しなかった18樹の3.50と差がなく一段と効果が劣った。また、立木仕立のパートレット6樹は平均被害度0.33±0.5164、廿世紀1樹は被害度0で、すぐれた効果が認められた。

<table>
<thead>
<tr>
<th>区</th>
<th>数率</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>調査樹数</th>
<th>平均被害度</th>
<th>標準偏差</th>
<th>LSD5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>アリ不在樹</td>
<td></td>
<td>17</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>43</td>
<td>0.93</td>
<td>±0.7284</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>数率</td>
<td>40.0</td>
<td>30.0</td>
<td>28.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アリ完全駆除樹</td>
<td></td>
<td>10</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>23</td>
<td>0.83</td>
<td>±0.7325</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>数率</td>
<td>43.0</td>
<td>35.0</td>
<td>17.0</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>アリ不完全駆除樹</td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>3.00</td>
<td>±0.8660</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td>数率</td>
<td>40.0</td>
<td>20.0</td>
<td>40.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>羽化期</td>
<td></td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>4.80</td>
<td>±0.4472</td>
<td>C</td>
</tr>
<tr>
<td>D D T散布樹</td>
<td></td>
<td>20.0</td>
<td>80.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>非休眠型</td>
<td></td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>0.67</td>
<td>±0.1292</td>
<td>A</td>
</tr>
<tr>
<td>アリ不在樹</td>
<td></td>
<td>33.0</td>
<td>67.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>無放飼樹</td>
<td></td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>3.70</td>
<td>±1.1291</td>
<td>B</td>
</tr>
</tbody>
</table>

・数値は樹数
第11表 試験9の取りつけシート数と被害度（1968）

<table>
<thead>
<tr>
<th>区</th>
<th>シート数</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>計</th>
</tr>
</thead>
<tbody>
<tr>
<td>アリ不在樹</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
</tr>
<tr>
<td>アリ駆除完全樹</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>アリ駆除不完全樹</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>羽化期DDT散布樹</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>アリ不在樹非体眠型</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

数値は樹数

第12表 実用化試験：試験10（1969）

<table>
<thead>
<tr>
<th>試験番号</th>
<th>区</th>
<th>項目</th>
<th>被害度</th>
<th>調査樹数</th>
<th>被害度</th>
<th>平均</th>
<th>標準偏差</th>
<th>LSD 5％</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>アリ不在樹</td>
<td>数率</td>
<td>159</td>
<td>22</td>
<td>181</td>
<td>0.12</td>
<td>±0.6266</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>88.0 12.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>アリ完全駆除樹</td>
<td>数率</td>
<td>59</td>
<td>1 9 6</td>
<td>84</td>
<td>0.37</td>
<td>±0.6117</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70.0 23.0 7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>アリ無駆除樹</td>
<td>数率</td>
<td>6 21.0</td>
<td>9 18 30 12 0 3 0</td>
<td>33</td>
<td>2.94</td>
<td>±1.5671</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11.0 11.0 11.0 33.0 11.0 22.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>無放飼樹</td>
<td>数率</td>
<td>2 9 3</td>
<td>4 11.0 50.0 17.0 22.0</td>
<td>18</td>
<td>3.50</td>
<td>±0.8488</td>
<td>C</td>
</tr>
</tbody>
</table>

3. 考察

天敵による防除効果は害虫の発生量と天敵の放飼量との相互の量的な関係によって大きな影響を受け、コナカイガラムシの寄生虫に比べてヤドリパチの放飼量が多過ぎる場合は必ずしも寄生率が高くなるとは限らないが、放飼量が少なかったと推定された場合の寄生率は低く、防除効果も劣るとされている（23）。しかし、試験9、10ではヤドリパチを放飼しなかった樹の被害度がかなり高く、供試樹の寄生量も相当多かったと推定されたが、ヤドリパチの羽化数が約500～1000頭で、規定数の1/4～1/2であってもすくれた防除効果が認められた。この原因の詳細は明らかでないが、次のが主因であったと考えられる。試験9では羽化期のDDT散布区を除き放飼後の殺虫剤は7月4日、8月6日の2回散布された。7月4日にはヤドリパチ殺虫前20～24日で、すでに産卵を終了し、寄生された虫がマミー化した後であった。このマミーに直接殺虫剤が散布された場合は体内のヤドリパチに影響あることは知られているが（4）、マミーの多くは粗皮下などの潜伏場所にあり、散布薬剤の影響がほとんどなかったものと考えられる。このマミーから7月18日に再びヤドリパチが羽化始まり、約2週間の羽化期間が確認された。ちょうど、この時期はコナカイガラムシの第1世代幼虫の移動開始期から最盛日頃にあたり、幼虫にヤドリパチの再寄生が認められた。そ
して、8月6日の散布は再寄生の終了後になり、これもヤドリバチの繁殖に影響がなかったと考えられる。試験10では6月28日、8月7日の2回に殺虫剤が散布されたが、これも試験9と同様に影響が見られる。6月28日はヤドリバチ放飼後16～19日にあり、すでに産卵終了した時期であった。そして、第2回目のヤドリバチ羽化は7月20日～8月5日頃に観察され、羽化終了後の8月7日に殺虫剤が散布された。このように放飼後の殺虫剤散布がヤドリバチの繁殖に影響のない時期に偶然行なわれたため、初期の放飼量が少なくても、再寄生によって防除効果を高くしたものと考えられる。したがって、ヤドリバチの放飼量はコナカイガラムシの寄生量だけでなく、放飼後も殺虫剤散布時期との関連も考慮に入れる必要がある。マミーの休眠型と非休眠型の比較では非休眠型の羽化期間が約10日であったのに対し、休眠型は約15日と短かがあった。実用的には他の害虫防除のためにヤドリバチ放飼期に接近して殺虫剤散布する場合もあり得るので、出来るだけ羽化期間が短いことが望まれる。また、休眠型の羽化が早いことも問題があり、現段階では非休眠型をマミーの使用が適当である。しかし、長期貯蔵が出来ることを考慮した場合、休眠型マミーの改良研究がなされる必要がある。放飼量は減少的な基準にしたがったが、取りつけシート数と被害度の相関関係が悪いかったことから、この方法で十分な効果があげられると考える。この試験結果から放飼適期、放飼量、アリの駆除、殺虫剤の使用時期など試験1～8で検討されたことが再確認され、実用性が高いことが実証された。また、少数例ではあったが、立木仕立のナシ類にも適用出来る可能性があると考えられた。

VI. 総合考察

この試験は放飼量、シートの取りつけ位置などを暫定的な基準を設けて実施した。
コナカイガラムシを防除するためのヤドリバチの放飼量については、白崎ら(30)は10a当たり50シートと100シートを各樹枠当割に放飼したが被害果率が判然と差が認められず、また、10a当たり50シートとその5倍量を放飼した区の被害果率にも大きな差が認められなかった。これは、コナカイガラムシの発生は個全体に一様に発生せず、局部的に発生する特性があることや、守本（23）のいうように、あまり大きな寄生密度を狭い地域に集中的に放飼した場合、過寄生や分散増大などの密度効果による諸現象のため、必ずしも期待した効果が得られないことに原因がある。そして、逆にコナカイガラムシの寄生量に対して放飼量が少なかったと推定された場合の防除効果は劣るが、寄生量に差がない場合は放飼量と寄生率の間に密接な相関が認められている(2, 3, 5, 6)。これらのことから、ヤドリバチの放飼量はコナカイガラムシの発生量に応じたものであることが望ましいが、まだ発生量を予察する方法が確立されていないことに問題がある。この試験では一応の目安を作り、寄生場所の観察によって寄生量の多少を推定する方法を用い、これにヤドリバチの分散能力を考慮に入れて放飼樹の樹冠の大小を加味した暫定的な方法を用いた。その結果、安定した効果が認められ、おおむね実用的な方法と考えられるが、被害を最少限に抑える適性放飼量
リンゴ園におけるクワコナカイガラムシの生態と防除に関する研究

を知るための方法確立が望まれる。また、シートの取りつけ位置も不完全な方法で行なって、何ら差し支えなく、釘で樹に固定する場合、シートを折りたたんだまま取り付けても、聞いてつけても防除効果に差が認められなかった。

放飼適期は2 ~ 3 令幼虫の発生期で、2 令幼虫が多い時期、3 令幼虫が多い時期、成虫発生初期のいずれも効果が認められ、寄主適期選択の範が広いことが判明した。守本（23）はヤドリガチの寄主選択について、寄主の生息場所におけるランダムな運動途中での寄主との出会いによって行なわれるものと推察している。したがって、寄主の体が大きいほど遭遇の機会が多くなるが、成虫寄生の場合まではマミー化するまで少量ながら産卵する個体がみられるため、成虫前の2 令幼虫終期で雄が雌を造り始めの頃、実用的に2 ～ 3 令幼虫発生期が適すると報告している。これは筆者らの試験結果と一致した。この時期は秋田県南部が6 月10 日、県北部が6 月15 日頃にあたる。

この試験結果から、ヤドリガチの寄生活動を阻害する大きな要因が2 つあることが明らかになった。その1 は生物的障害要因のコナカイガラムシと共棲するアリの影響であった。アリの群れが出来なかった樹のヤドリガチの寄生率は低く、防除効果も劣る。F l a n d e r s (9)、H e n r y (10)、W a y (40) からの報告と同じ傾向が例えた。守本（23）は果樹園に生息しているアリの種について、クロヤマアリ、アミメアリなどはヤドリガチの寄生活動に大きな影響がないようだが、トビイロアリ、クロクサアリの防除効果は激しいと報告している。秋田県内のリンゴ樹に生息しているアリの種はトビイロアリがほとんどで、その他クロヤマアリと不明種が確認されている。この防除は動力噴霧機を用いて殺虫剤を果に灌漑する方法を用いたが、その構造による防除効果の不確実性、殺虫剤の人体毒性など、早急に確立しなければならない問題が残されている。今後、低毒性有機増幅剤、N A C 剤などを実用濃度で使い、リンデンなみの効果をあげている。

その2 は人為的障害要因の殺虫剤の使用方法であった。ヤドリガチは殺虫剤に弱く、その残効力を考慮に入れると放飼前約7 日から放飼後約10 日の間は殺虫剤散布を規制する必要が認められた。この間に他の害虫防除のため殺虫剤散布が必要な場合はヤドリガチの実用化は望めない。リンゴ害虫の種は多く、高橋（31）は約180 種、豊島（35）は132 種でそのうち重要種は10 种を記録している。秋田県内では重要害虫が9 種その他数種が年により発生の目立つことがある。これらの防除は殺虫剤の散布に頼っている状態だけに、発生種が多いほど散布回数も多くなり勝であるが、既存天敵の保護、園内昆虫相の均衡破壊防止、抵抗性害虫の出現防止などのため、年間の殺虫剤散布回数を3 ～ 4 回に抑え、とくに落花後10 ～ 20 日（5 月下旬～ 6 月上旬）のサヒ果発生期間中の散布をやめて来た。この間に発生する害虫は数種あるが、標準防除はハマキムシ類、ハダニ類、ドクガ類、シヤトリムシ類は芽出し後2 週間～ 落花直後（4 月下旬～ 5 月中旬）、キンモホソガは8 月始めに殺虫剤を散布する方法を実なっている。ヤドリガチの放飼適期はこの殺虫剤散布を避けている期間の後半にあたるので、標準化では現在の防除体系にそのままヤドリガチによる防除
法を組み込む有利性がある。しかし、障害になる害虫はモノシクタイガである。この害虫の発生密度は全般的に低いが、実害はほとんどない現状だが、被害果実管理を怠っている園の密度は高く、実害も大きい。発生密度が普通以下の園では6月12～13日頃から果実に産卵し、この時期の卵期間が約10～14日間あるので、殺虫剤（低毒性有機磷剤、NAC剤）の散布は6月20日過ぎになる。しかし、発生密度が高い園では6月初旬頃から産卵するため、殺卵剤散布は6月15日頃になり、試験結果のヤドリガチ放棄適期が重なることになる。発生密度が普通以下の園では殺卵剤の散布が最悪の場合に6月20日になるとして、これからヤドリガチに対する殺虫剤の影響がない放棄日を逆算すると6月10日になり、試験結果の放棄適期と一致することになる。したがって、モノシクタイガの発生密度が高い園ではヤドリガチの利用は困難である。このような園では、被害果実処分法を徹底させて発生密度を下げることが先決問題であろう。ただ、村上（19）、堀田（13）らの若令期ほどヤドリガチ雌1頭当りのコナカイガラムシ倒死虫数が多いという報告から、コナカイガラムシの1～2令幼虫期にヤドリガチを放棄しても防除効果があるとすれば、このような園でも使用出来ることになる。ば場での若令期に放棄した防除効果の検討はこの点からも必要であろう。また、放棄後の殺虫剤の使用方法でヤドリガチは自然増殖し、コナカイガラムシに再寄生することが判明した。6月中旬に放棄したヤドリガチは年4回の成虫が羽化し、第2回成虫の羽化期は1968年7月18日～8月2日、1970年が7月9日～7月29日、1971年が7月16日～8月5日であった。これに対し、秋田県の基準防除型では6月末と8月中旬に他の害虫防除のため殺虫剤を散布するよう定めてある。この基準にしたがって実用化試験の殺虫剤散布を行なったため、第2回成虫に与えた影響が少なく、7月20日前後から腐化移動したコナカイガラムシの第1世代虫に対して再寄生が認められた。さらに、第3回成虫は8月～9月、第4回成虫は9月～10月に羽化し、生き残ったコナカイガラムシに寄生を繰返す自然の結果になった。このことから、ヤドリガチを利用するには放棄虫の第1回羽化期だけではなく、薬剤散布期間中の羽化期に及ぼす殺虫剤の影響を排除することが最も効果的だと思う。または、これはヤドリガチ放棄量とも関連する問題である。この試験では供試材の条件に応じて1樹に3～5シートを放棄したが、1シート当たりの成虫羽化数は目標の2000頭を下回る約500～1000頭で相違なかったものが多くかった。それにかもかわらず、防除効果が高かったのは放棄虫の再寄生現象によるものと考えられた。したがって、放棄適量には年間の成虫羽化時期と殺虫剤散布時期の相互関係が関与するものと判断されるので、この関係をば場で明かにすることが求められた問題の1つであろう。現状では放棄適量を解く方法はないが、一連の試験結果から、秋田県の基準防除体系では1シート当たり約1000頭の羽化数で十分であると考える。

ヤドリガチは比較的暖地に分布（17）するため、寒冷地帯の東北地方では越冬が疑問視されていった。しかし、白崎ら（30）も青森県で確認したように、秋田県でも少数ながら越冬虫が認められ、これが自然増殖することが観察された。越冬虫の発生経過は不明であるが、年内放棄虫の発生経過
とあわせて実態を明らかにしたい。

以上から、残された問題はいくつかあるが、コナサイガラムシ越冬世代の2令幼虫が最多も多い時期に放餌、寄生数の多少、褐冠の大きさに応じて1樹3〜5シートの放餌、結果枝に出るだけ近い場所にシートを固定、生物的障害要因のアリの駆除、人為的障害要因の殺虫剤使用法など解明された方法を実施することにより、ヤドリガチ放餌によるコナサイガラムシの防除効果は高く、十分な実用性が認められた。そして、この方法は従来の殺虫剤散布による方法（27）より適期の中に広く、効果の安定性も高く、且つ、夏期の殺虫剤散布の低減から既存天敵の保護にも役立つ有利性がある。

VII. 摘 要

1. 人工的に大量増殖したクロコナサイガラヤドリガチを用いて、リンゴの害虫クロコナサイガラムシの防除法を1965〜1969年に試験した。その際に、放餌量はコナサイガラムシの寄生数の多少と樹冠の大きさにより3〜5シートとし、シートの取つけ位置は果実のなっている場所に近い第1垂枝枝分岐点の主枝脇面に釘で固定した。

2. 放餌適期はコナサイガラムシの越冬世代期で2令幼虫の多い時期が適し、秋田県南部では6月10日頃、県北部では6月15日頃になる。

3. ヤドリガチ寄生活動の生物的障害要因は、リンゴ樹に営巣し、コナサイガラムシと共棲するアリ（ときにLasius niger L.）であって、これを駆除しなければヤドリガチ放餌による防除効果を高くすることが出来なかった。アリの駆除法は簡便的に低毒性有機懐剤、NAC 剤を実用濃度で巣に大量灌注する方法を用いた。

4. ヤドリガチ寄生活動の人為的障害要因は殺虫剤の使用で、放餌前約7日から放餌後約10日間は殺虫剤を散布してはならなかった。また、放餌したヤドリガチの巣での羽化回数は年4回認められたが、羽化期間中に殺虫剤を散布しなかった場合はヤドリガチがコナサイガラムシに再寄生し、これが防除効果をより一層高くなった原因と考えられた。

5. 放餌適期、共棲するアリの駆除、殺虫剤の影響排除などを考慮に入れて実用化試験を行なった結果、防除効果は高く、これまで行なって来た殺虫剤散布による防除法より安定性があり、実用性の高いことが実証された。

VIII. 引用文献

1. 青森県農林部りんご課（1970）：青森県りんご発達史：9：72〜77。

2. 青森県りんご試験場（1965）：リンゴ農薬連絡試験成績。88〜93。（とう写）

3. 青森県りんご試験場（1966 a）：リンゴ農薬連絡試験成績。70〜81。（とう写）
4. 青森県りんご試験場 （1966 b）：虫害に関する試験成績. 15〜16. （どう写）
5. 青森県りんご試験場 （1967）：リンゴ農薬連絡試験成績. 91〜111. （どう写）
6. 青森県りんご試験場 （1968）：寒冷地果樹に関する試験研究打合せ会議資料 （第3分科会）.
 69〜70. （どう写）
7. 秋田県果樹試験場 （1979）：リンゴ農薬連絡試験成績. 86〜89. （どう写）
8. 福島県果試験場 （1965）：果樹病害虫試験成績書. 42〜45. （どう写）
11. 岩手県果試験場 （1965）：リンゴ農薬連絡試験成績. 23〜29. （どう写）
12. 岩手県果試験場 （1966）：リンゴ農薬連絡試験成績. 11〜20. （どう写）
13. 梶田泰司 （1966）：九大農学部学芸雑誌. 22（3）. 319〜324.
15. 宮城県農業試験場 （1965）：リンゴ農薬連絡試験成績. 38〜43. （どう写）
16. 宮城県農業試験場 （1965）：リンゴ農薬連絡試験成績. 19〜24. （どう写）
17. 村上陽三 （1965 a）：農林省園芸試験場報告. A 4：145〜152.
18. 村上陽三 （1965 b）：農林省園芸試験場報告. A 4：125〜144.
20. 守本隆也・飯島朗平・三宅英雄・岸谷 茂雄・梶田泰司 （1964 a）：応動昆大会講演要旨. 15.
21. 守本隆也・飯島朗平・三宅英雄・岸谷 茂雄・梶田泰司 （1964 b）：応動昆大会講演要旨. 16.
22. 守本隆也・飯島朗平・三宅英雄・岸谷 茂雄・梶田泰司 （1965）：応動昆大会講演要旨. 30.
23. 守本隆也 （1971）：武田研究所報. 30（1）：198〜216.
24. 長野県果試験場 （1965）：リンゴ農薬連絡試験成績 （その他）. 6〜8. （どう写）
25. 長野県果試験場 （1966）：リンゴ農薬連絡試験成績. 34（どう写）
26. 成田 弘・高橋佑治・佐藤修司 （1969）：秋田県果樹試験場研究報告. 1：71〜94.
27. 成田 弘・高橋佑治・佐藤修司・工藤哲男 （1970）：秋田県果樹試験場研究報告. 2：41〜63.
29. 菅原寛夫・若公正義 （1967）：北日本病害虫研究会報. 18：115.
30. 白崎将瑛・関田康雄・山田雅観・小山信行・津川 力 （1969）：青森県りんご試験場報告.
 13：1〜25.
31. 高橋 哲（1930）：果樹害虫篇.
33. 田中 学 （1966）：農林水産技術会議研究成果. 28：69〜70.
34．豊島在寛（1938）：青森県野果試験場研究報告．1．28．
35．豊島在寛（1950）：被害虫の生態と防除（果樹篇）15～108．
36．山形県農業試験場置賜分場（1966）：リンゴ農業連絡試験成績．11～14．（とう写）
37．安松京三（1960）：植物防虫．14（11）.467～470．
38．安松京三（1968）：植物防虫．22（5）.210～213．
39．安松京三（1970）：日本放送出版協会．159．
1. クワコナガイガラヤドリバチの成虫

2. クワコナガイガラヤドリバチのマミー

3. マミー内のクワコナガイガラヤドリバチの蛹

4. クワコナガイガラムシ幼虫の排出蜜をなめるトピイロケアリ
5. リンゴ樹幹に土砂、木くずでつくられたトピイロケアリのトンネル

6. トンネル内の樹皮と木質部の間にたまったクワコナカイガラムシの排出蜜をなめるトピイロケアリ

7. アリが営巣しているリンゴ樹幹の空洞部

8. アリの防除作業。動力噴霧機でアリの巣に殺虫剤を灌注する
Studies on the Ecology and Control Methods of Comstock Mealybug (*Pseudococcus comstocki* KUWANA) in Apple Orchard

III. On Biological Control of Comstock Mealybug by Parasite (*Pseudaphycus malinus* GAHAN)

Hiroshi Narita, Yuzi Takahashi, Tetuo Kudo and Shuji Sato

Summary

1. Test was carried out in 1965-1969 on extermination of an apple pest called comstock mealybug (*Pseudococcus comstocki* KUWANA) by using the parasite (*Pseudaphycus malinus* GAHAN) which was cultivated artificially in a large quantity. The amount of the parasite used as released parasite was between 3 to 5 sheets depending on the amount of comstock mealybug and the size of the crown, and the sheets were fixed by nailing them to the back side of the main branch of the first subbranch dividing point near the place where the fruit grows.

2. The optimum time for released parasite is during the overwintering generation period of comstock mealybug and a time when the amount of the second and third instar stage is large, which accords about June 10th in the southern part of Akita prefecture and June 15th in the northern part.

3. The biological obstruction factor of the parasitic activity of the parasite is the attack by ant (*Lasius niger* L.) which nests in apple trees and is symbiotic with comstock mealybug and it is difficult to obtain high control effect by releasing the parasite unless the ant is exterminated. The method of injecting a large amount of organic phosphorus compounds of low toxicity and NAC at a practical concentration into the nest was applied tentatively.

4. The artificial obstruction factor of the parasitic activity of the parasite is due to the use of insecticides and consequently, spraying of insecticides must not be carried out about 7 days before releasing and 10 days after
releasing. Also, it was considered that emergency time of the parasite was 4 times per year in the field. When insecticides are not sprayed during the emergency periods, the parasite becomes parasitic on comstock mealybug and it was assumed that this increased further the extermination effect.

5. A test for putting this into practical use was carried out by taking into consideration the releasing period, extermination of ant and removal of the effect of insecticides. As a result, it was shown that the extermination effect was good, and more stable than the control method of spraying insecticides, which has been practiced up to now and it has found a large possibility of practical use.