リンゴ園におけるクワコナガイガラムシ
の生態と防除に関する研究

第1報．クワコナガイガラムシふ化幼虫の移動について

成田 弘・高橋佐治・佐藤修司

I．緒言

秋田県内に分布するコナガイガラムシ科 (Pseudococcidae) は、クワコナガイガラムシ (Pseudococcus comstockii KUWANA)、マツモトコナガイガラムシ (Pseudococcus matsumotoi SHIRAIWA、オウタコナガイガラムシ (Phenacoccus Pergrandei COCKERELL) の3種が確認されている。このうち、マツモトコナガイガラムシは、秋田県昭和町、平鹿郡增田町のリンゴ園に少数発見されるだけで、オウタコナガイガラムシは、リンゴ、和ナシ、カキ等に全縣的に寄生しているが、発生密度は低い。これにくらべクワコナガイガラムシは、リンゴ、和ナシ、洋ナシ、ブドウなどに全全县的に寄生し、特に栽培歴の古い平鹿郡、雄勝郡、鹿角郡の有袋栽培園に被害が目立っている。この害虫の被害は、ふ化幼虫が移動して樹の枝や果実の周辺部を食べ、果実を腐敗させ、腐敗果実を吸収して繁殖するため、吸収された果肉の部分はコルク化し、果皮の部分は着色せず、劣化をきたすことからリンゴとなる。また、果実が収穫後に果皮の着色が色づいて外観をそこえるほか、虫体からの排泄物に炭疽病菌が2次発生して果実を汚染し、果実の品質を低下する。無袋果実は有袋果実より被害が少ないが、収穫後数日に幼虫が潜入して繁殖することもあり、品質の低下は無視することができない。また、被害様相は地域の果樹全体が害されることが少なく、被害樹は散在する傾向があり、ひとつの園では被害果率の粒80％以上におよぶこともある。

この害虫に関する研究は、高橋 (20) が新潟県の和ナシにおける発生経過と防除法について発表したのが最初で、当時は、果実ではなく、樹皮、樹根にも大量に寄生して樹勢を著しく衰弱させ、
せたといわれる。その後、目だたの研究はなかったが、1960年から始まった果樹等害虫発生予察実験事業がすすみつつあり、リンゴ、和ナシ、ブドウなどの害虫としての研究が多くなり、和ナシにおける長野労働（15）、福田（6）らの生態的研究が発表された。

一方、リンゴ害虫としての研究は浅く、第二次大戦前にはオウラタコナカイガラムシの被害だけが報告され、この害虫は記録されていなかった。戦後、青森県のリンゴ園に発生が確認され、豊島（25）が生態の概要を記録したのが初めての発表であろう。その後は津川（22）らの越冬卵のふ化期に関する報告があるだけである。現在、リンゴで実用化している防除法は、豊島、津川らの研究に基づき、防除作業を併用させた合併防除方式がとられている。しかし、その防除効果には浮動が大きく、実用性に疑問がもたれていた。この研究は防除上の第一段階として、ふ化幼虫の移動の実態を調査したものである。

本稿を草するにあたり、御指導を受けた今増竹栄博士、文献について御助言を受けた全協連東京支所豊島在宅氏に謹んで感謝の意を表する。

１．結果

１．1．ふ化幼虫の移動消長について

クワコナカイガラムシの伝播の主体は、ふ化幼虫の枝幹はふくによって行なわれる。また、卵は白色卵状の植質物におわれているため、流乳剤、殺虫剤の効果が低く、幼虫もふ化から数日をへれにつれ、体表は白色植質物でおわれ、成虫になるにつれて殺虫剤の効果は低減する。しかしご卵、幼虫、成虫とも、現皮枝、枝幹間隔、空洞部、根際地中などに潜伏しているため、殺虫剤がかかられる場所に至って、より防除効果が低減する。ただ、ふ化幼虫だけは、黄色で植質物におわれず、殺虫剤が効きやすい状態にある。しかし、これも有無栽培では袋内部に移動を避けるので、移動開始から袋内潜入までの短期間に殺虫剤を接触させねばならない。したがって、伝播の主体であり、殺虫剤が最も効きやすい状態にあるふ化幼虫の出現期を知ることがこの害虫防除上の要点となる。

従来、りんご害虫としてふ化幼虫の移動消長は、津川（21）、（23）、小林（10）らの報告があるが、これらによると、年間の移動回数は2～3回で、各世代の移動期間は比較的短く世代間には移動の切れ目ははっきりみられる単純な型を示している。これらの調査方法は、人工的に卵のうを枝幹部に着させ、卵数卵でふ化、移動期をとらえたものを基準にして、自然状態での移動期をとらえていない。この害虫の卵のうは、樹冠部から根際地中にいた伏仮設に産卵されその条件での数値温度によってふ化するから、自然のふ化、移動期は変動が多いことが想像される。そのため、ここでは第1段階として、実験的方法によらず、野外におけるふ化幼虫移動の実態を解明することにした。
(1) 同一樹におけるふ化幼虫移動消長の年差について

i 老木樹における移動消長（1958～1964年）

材料と方法

供試樹は平鹿部増田町柳原の選抜厳格の在用、前年秋の被害果率60%以上の国光老木（45年生以上）60株から、雪害、台風害等で枝幹部に欠損のできた3株を選び、1958～1964年の7年間、同じ樹について継続観察した。供試樹には、毎年4月末日までに、主幹の地上50～100cmの部分、大枝（主枝級）分岐点の上部、小枝（亜主枝級）分枝点の上部、支柱の地上100cmの各部分にタングルフードを巾約5cm、厚さ約3mmに塗布し、5月10日からふ化幼虫の移動終了期まで10日ごとに附着虫を数えた。附着虫はルーペで調べ、調査の終了した虫はタングルにかきませ、粘着力が低下した場合は新しいものを補給塗布した。調査時間は原則として午前10～12時に決めたが、降雨のときはタングルが変色して虫の判定がつきにくいため、雨上がり後4～5時間に行なった。附着虫を数えるときに注意したことは、リンゴワタムシ（Eriosoma lanigerum Hausmann）の幼虫との識別で、ルーペ観察による形体、体色によって区分した。また、調査期間中は供試樹に接触剤を散布せず、殺菌剤、殺ダニ剤、硫酸銅だけに使用を限定した。

クリコナカガイグラムシとリンゴワタムシの雌幼虫識別基準

<table>
<thead>
<tr>
<th>種名</th>
<th>体長</th>
<th>体色</th>
<th>形態の特徴</th>
</tr>
</thead>
<tbody>
<tr>
<td>クリコナカガイグラムシ</td>
<td>約0.4～0.6mm</td>
<td>淡黄色</td>
<td>だ円形で扁平状、尾端に1対の尾叉を有す</td>
</tr>
<tr>
<td>リンゴワタムシ</td>
<td>約0.7～0.8mm</td>
<td>紺褐色</td>
<td>長だ円形で卵状にて腹部がやや広く、尾端は円形。肩部に白色線状物質をつけているものも多い</td>
</tr>
</tbody>
</table>

供試樹の条件

No.1樹：主幹の長さ約200cm、主枝は地上約180cmのところから南側に1本だけあり、地上約120cmのところの東側と、約200cmのところの北側に古い主枝の切口がある。主幹の地上約50～100cmの内部は空洞で、地上約100cmの東南側に約15×15cmの穴があいている。また、主幹の地上約10～50cmの東側に、約10～15cmの亀裂が亀裂のように生じている。

No.2樹：主幹の長さ約250cm、主幹の先端から北側に1本の主枝があり、その対向側に古い主枝の切口が1つある。この分岐点か主枝において約20～80cmのところは空洞で、東側に約5～10cmの穴が4カ所ある。また、主幹の地上約30cmの南側に穴が約5～10cmの亀裂が亀裂のように地上まで達し、内部にトビイロアリ（Lasius niger Linne'）の巣がある。

No.3樹：主幹の長さ約200cm。地上約120cmの左側に1本の主枝があり、反対側に地上約180cmのところに古い主枝の切口が1つある。主幹の地上約50～150cmのところは空洞で、内部の木質部は腐敗してほとんどなく、北側に約10～15cmの穴が縦にあいている。また、主幹の分岐点から
先の方にかけて、約60×25cmの空洞があり、南側に約10×15cmの穴があいている。

結果
第1図のように老木樹のふ化幼虫移動消長は、樹により、年により、かなり大きい変動がみられ
た。
No.1樹では、1958〜1959年の2年間、越冬世代の移動量が多くて移動期間も長く、第1世代ふ
化幼虫の移動期と重なって連続移動し、1959年だけ第2世代が少量移動した。1960〜1961年の2年
間は、越冬世代の移動量が少なくて移動期間が長く、第1、第2世代の移動量が多く、これら3世
代の移動期が重なって連続移動した。次の1962〜64年の3年間は、越冬世代の移動量少なくて移動
期間も短く、第1世代の移動期との間に切れ目があり、第1、第2世代が重なって連続移動した。
No.2樹では、7年間とも不規則なふ化幼虫の移動がみられた。1958〜1961年の4年間は、越冬
世代の移動期間が長かったが移動量に差があり、1959年だけは移動量が多かったが、他の3年間は
少量であった。そして、次の1962〜1964年の3年間の越冬世代は移動虫がみられなかった。第1、
第2世代の移動量、移動時期とも年による差が大きくみられた。
No.3樹では、1958〜1959年の2年間、越冬世代が移動量多くて移動期間も長く、第1世代の移
動期と重なり、No.1樹と相似した移動がみられた。1960〜1964年5年間は、移動量、移動時期
とも差が大きくみられた。
全体的にふ化幼虫の移動量、移動時期とも変動が大きかったが、年ごとにみては、特に越冬世代
に不斉の傾向が強くみられ、移動量が多くて移動期間が長いとき、移動量が少なくて移動期間が
長いとき、移動量少なくて移動期も短いとき、全く移動しないときなど差が大きい。これに比べて
第1世代は移動量に差があるが、移動開始期は大体そろい、移動期間も7月20日〜8月30日ころに比
較的そろって行なわれ、ピークも移動開始日から10日以内にみられる。第2世代の移動量、移動期

第1図 リンゴ老木樹におけるクワガタガイムシふ化幼虫の移動消長（秋果試1958〜1964）
はともに不ぞろいで、越冬世代について不斎一であった。この老木の移動期間、樹間、年間には有意な差（1％）が認められた。

ii 成木樹における移動消長（1959～1964年）

材料と方法

湯沢市吹振・高橋角兵衛氏の園を用い、前年秋に被害果率60％以上あった国光成木（約20年生）3樹を80αからランダムに選び、1959～1964年の6年間、同じ樹について継続調査した。調査方法は老木樹と同じくし、供試樹は、3樹とも3本主枝で枝幹に欠損がなく、粗度も少ない条件であった。

結果

第2図のように成木樹の不化幼虫移動消長は、各世代とも移動量が少なくて移動期間も短く、それぞれの世代間にはっきりとした移動の切れ目がある単純な移動型を示した。しかし、樹により、年により移動がみられないこともあった。6年間の通算調査18本の内、越冬世代が移動しなかったもの10樹、第1世代が移動しなかったもの2樹、第2世代が移動しなかったもの6樹あり、越冬世代の移動が特に不斎で、第2世代がこれに次いでいる。第1世代の移動は移動量に差はあるが、移動時期は7月20日～8月20日ごろに大体そろって行なわれ、ピークは移動開始日から10日以内にみられた。この成木樹の移動期間に有意差（1％）があり、樹間、年間には差が認められなかった。

(2) 不化幼虫移動消長の地域差について

材料と方法

県南部の主要産地10ヵ所から各1園を選び、前年秋に被害の多かった国光成木を1園からそれぞれ3樹をランダムにとった。調査は老木樹と同じ方法で行なったが、1回の調査は全国2目で終わらせるように計画した。また、調査には同人が2人二組になって全国を調べ、誤差を少なくす
るようにした。

供試樹と供試樹の条件

<table>
<thead>
<tr>
<th>園番号</th>
<th>所在地</th>
<th>園主氏名</th>
<th>地勢</th>
<th>供試樹 Kes</th>
<th>供試樹の条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>大曲市花園</td>
<td>佐藤 聡雄</td>
<td>平地</td>
<td>約20年生</td>
<td>No.3, No.1.2, No.1.3</td>
</tr>
<tr>
<td>2</td>
<td>大曲市角間川</td>
<td>平野 兵吉</td>
<td>平地</td>
<td>40年</td>
<td>0, No.1.2, No.1.3</td>
</tr>
<tr>
<td>3</td>
<td>横手市金沢</td>
<td>成野 忠次</td>
<td>平地</td>
<td>20年</td>
<td>0, No.1.3, No.2</td>
</tr>
<tr>
<td>4</td>
<td>横手市金沢</td>
<td>梵沢 宜郎</td>
<td>傾斜地</td>
<td>30年</td>
<td>No.1.2.3</td>
</tr>
<tr>
<td>5</td>
<td>平蔵郡平鹿町深藤下深蔵</td>
<td>市田 常次</td>
<td>平地</td>
<td>10年</td>
<td>0, 0, No.1.2.3</td>
</tr>
<tr>
<td>6</td>
<td>平蔵郡深鹿町深藤下深藤</td>
<td>高橋 泰治</td>
<td>平地</td>
<td>10年</td>
<td>0, 0, No.1.2.3</td>
</tr>
<tr>
<td>7</td>
<td>平蔵郡深鹿町深藤下深藤</td>
<td>斎藤 新一</td>
<td>平地</td>
<td>30年</td>
<td>No.1.2.3</td>
</tr>
<tr>
<td>8</td>
<td>雄勝郡鶴ヶ谷町東福寺</td>
<td>後藤 敬治</td>
<td>平地</td>
<td>20年</td>
<td>0, No.1.2.3</td>
</tr>
<tr>
<td>9</td>
<td>雄勝郡鶴ヶ谷町東福寺</td>
<td>日野多見男</td>
<td>傾斜地</td>
<td>20年</td>
<td>0, 0, No.1.2.3</td>
</tr>
<tr>
<td>10</td>
<td>湯沢市三関地上関</td>
<td>佐藤 倉治</td>
<td>平地</td>
<td>30年</td>
<td>0, 0, No.1.2.3</td>
</tr>
</tbody>
</table>

計 7樹 10樹 13樹 30樹

結 果

10地区、30樹のふ化幼虫移動消長は、単純な移動型は少なく、全体的にかなり変動が大きくみられた。

供試樹の3樹とも枝幹に欠損のあった金沢傾斜地（園番号4）と馬鞍（園番号7）の2地区では
各世代の移動量、移動時期とも差が大きく、時に越冬世代が不齊一で、第1世代は移動量に差があ
るが、移動時期は比較的そろい、7月20日～8月30日の約40日間にみられた。供試樹の3樹とも枝
皮量の多かった角間川（園番号2）、東福寺平地（園番号8）、供試樹のうち2樹が枝皮量多かっ

第2図　リンゴ木樹におけるクワナカイガラムシふ化幼虫の移動消長（秋果試1959～1964）
た花期（園番号1）、金沢平地（園番号3）では、枝幹に欠損の多い樹と同じく、各世代の移動量移動時期に差が大きく、移動消長が複雑なものが多くみられた。供試樹の3樹とも粗皮量が少なかった下駄駄（園番号5）、石成（園番号6）、東福寺傾斜地（園番号9）、三関（園番号10）と金沢平地のNo.2樹でも、各世代の移動期間が短く、単純な移動型のものは少なく、13樹中、6樹だけで、他の樹は移動量、移動期間とも不斉であったり。

同じ地域のうちに、同じ条件の樹で移動型が同じ傾向にあったのは東福寺平地（園番号8）、三関（園番号10）だけで、他の地区には差がみられた。

30樹のうち、枝幹部に欠損のある7樹に共通なことは、各世代の移動量、移動時期にやや差はあるが、越冬世代の移動量が多く、移動期間の長が広く、後半は第1世代の移動初期と重なっている。これは、老木の移動消長調査の1959年にみられた複雑な型と似ている。枝幹部に欠損がなく粗皮量の少ない13樹では、成木の移動消長調査の1959年にみられた単純な型と似ているものが6樹だけあった。そして、他の7樹と、枝幹に欠損がなく、粗皮量の多い10樹は、前の2つの型と違う別な変動の多い移動消長を示した。この調査の地域間、樹間、移動期間にそれぞれ有意差（1％）が認められた。

考察

この害虫の生息場所は、背光性の習性を有するため光のあたる場所が主である。リンゴ樹では粗皮下、空洞部内、根際地中等に潜伏している。そこで、調査樹を選ぶにあたって次のこととに留意した。どの地区にも普遍的に栽培されている国光の被害の多い樹で、枝幹に欠損があり、粗皮量の多い老木と、枝幹に欠損がなく粗皮量の少ない比較的若い成木を選び、潜伏場所の条件
が反対な樹についての年差を検討した。また、調査地域を拡大し、前の2条件の樹と、この中間である枝幹部に欠損がなく、樹皮量の多い被害樹に区分し、供試樹を3つの健康所別に分けて地域差を検討した。その結果、この害害の潜伏場所の多い樹は、幼虫の発生が複雑な形を示し、潜伏場所の少ない樹では単純な形を示す傾向がみられた。しかし地域差の調査中、潜伏場所の少ない樹であっても、単純な形ばかりではなく、複雑なものも少なくない。しかし、年により、樹によって、地域によってかなり変動がみられ、野外圃場における発生の変動は一定の型ではないことを伺い得た。

この原因は明らかでないが、樹によってこの害害の生息に適する潜伏場所に差があり、そこに産卵される卵の数の差、その場所の気象的条件による生育速度の差、発生の発生に及ぼす気象的な条件の差などの諸要因の影響によるものであろう。したがって、潜伏場所の多い樹ほど、発生、成虫の発生場所、産卵場所がバラつき、それぞれの場所の気象条件の差で虫の生育速度も巾が広くなり、更に、発生の発生に要する諸要因が加わるため、複雑な発生現象がみられるものと推察される。

発生の発生を各世代ごとにみると、越冬世代が最も不斉であった。これは、潜伏場所が多
い場ほど、移動量、移動期に極端にみられた現象だが、蟻状場所の少ない場でも移動量が多くて移動者が断続的に生を広げるもの、移動量が少なくて移動者がダラダラと続くもの、移動量が少なくて移動時期もが長いもの、全く移動しないものなどの差がみられる。第2世代では、越冬世代には次いで、移動量、移動時期とも不ぞろいであった。これに比べて、第1世代の移動は蟻状場所の多少にかかわらず、移動量には多少の差があるが、移動時期は大体同じで比較的そろっており、ピークも移動開始日から大体10日以内にあることが多い。

移動消長には地域間差が認められたが、これは調査地域が県南西部の主要生産地域の中心地を南北約40kmの範囲に10カ所としたので、気象的条件に大差はなく、むしろ、調査場の裾状場所の条件差が主因と考えられるよう。

また、各世代の移動開始日、ピーク、終了目と、リンゴ紅玉、国光の生育期（芽出し始め日、展業開始日、開花始め日、開花期、落花終了日など）との間に相関関係を求めていたが、その関係は低かった。

1958～1966年の9年間に移動消長を調べた延べ数は110箱に達したが、その結果を総合すると移動の型は次の5型に区分することが出来る。（第4図）

1型：越冬世代ふ化幼虫の移動量が多く、移動期間が長く、そして第1、第2世代ふ化幼虫の移動量が少なく、移動期間が短い型。

2型：越冬世代ふ化幼虫の移動量が少なく、移動期間が長く、そして、第1、第2世代ふ化幼虫の移動量が多く、移動期間が長い型。

3型：越冬世代ふ化幼虫の移動量が少なく、移動期間が短く、そして、第1、第2世代ふ化幼虫の移動量が多く、移動期間が長い型。

4型：越冬、第1世代ふ化幼虫の移動量が少なく、その期間が長く、そして、第2世代ふ化幼虫の移動量も少なく、移動期間が短い型。

5型：越冬、第1、第2世代ともふ化幼虫の移動量少なく移動期間が短いもの。

2. 越冬卵の条件差によるふ化開始期とふ化幼虫移動期について

1958年からふ化幼虫の移動消長を調査した結果、既往業績に反して、越冬世代の移動期が不規則な傾向を示い得た。この現象は、越冬卵の産卵場所差とその条件下の温度変化によって起こるのではないかと疑問を持ち、次年の1959年から自然条件での実験的な裏付け資料を得るために試験を
はじめた。

越冬卵の発化に関する室内実験は、津川（22）をはじめ、後で、青森リンゴ果（2）秋田果（3）、福田（6）などにより行われられたが、自然条件下での発化、移動に関する試験結果はまだ報告されていない。

1959年に実験に着手した当時は、適切な試験方法がわからず、方法の検討も兼ねて予備試験を行なったため、結果を得るまで長期間を要した。はじめに、人工条件下で、馬鈴薯の軟白芽を利用した方法を1959〜1961年の3年間検討したが、方法に欠点が多く、発化期間の一応の傾向を知るだけにとどまった。そこで試験管を利用し、現地圃場の老木を用いた方法に切り替え、1962〜1964年の3年間に予備試験を行ない、方法が確立したところで本試験に移り、1965〜1967年の3年間でほぼその目的を達成することができた。

(1) 人工条件下の越冬卵発化開始期と発化幼虫移動期について（1959〜1961年）

材料と方法

3月30日に、同一地域リンゴ園の枝幹粗皮下から卵のうを採集し、ただちに馬鈴薯の芽から約1cmはなれた部分にピッケットで附着させ、その日のうちにガラスボット（15×18cm）に入れて区分処理した。調査は毎回午前9〜10時に実験室内で行なったが、処理場所から実験室まで約10mの距離を移動させる時、供試馬鈴薯に日光があたりぬよう注意した。

記録方法

簡易調査（1959〜1960年）

馬鈴薯の芽に幼虫が移動附着した日を移動開始日とし、ピッケットで卵のうを軽くおこして、内部に生存幼虫がみられなくなった日を移動終了日とした。記録は虫を数えず、移動虫が認められた日数で現わした。

発化開始日の調査は1960年だけ行なったが、調査は24時間ごとに行ない、卵のうをピッケットで軽くおこして発化幼虫の出現日を確認し、発化開始から移動開始までの期間も調査した。

移動虫数の調査（1961年）

馬鈴薯の軟白芽に移動して附着する虫数を3日毎に数え、その都度附着虫を軟白芽からピッケット、針など用いて除外した。

実験区分

<table>
<thead>
<tr>
<th>試験年度</th>
<th>1区の供試馬鈴薯の数</th>
<th>区分</th>
<th>1区の供試馬鈴薯の数</th>
<th>区分</th>
<th>日光</th>
<th>日陰</th>
<th>日光</th>
<th>日陰</th>
<th>室内</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959</td>
<td>10個</td>
<td>1個</td>
<td>1個</td>
<td>1個</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>1960</td>
<td>30個</td>
<td>3個</td>
<td>3個</td>
<td>3個</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>1961</td>
<td>25個</td>
<td>3個</td>
<td>3個</td>
<td>3個</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

凡例　○：供試区
i 地上日射面：実験室の南面の壁から約1mはなれた所に木製の台を作り、地上約1mの所に口を壁面に向けた木箱（30×25×25cm）を固定させ、その中に馬鈴薯を入れたガラスポットを入れた。なお、1959年はポットにガラス蓋をし、1960年は無蓋とした。

ii 地中日陰面：地上日射面と同じ、北面の日光のあたる場所に設置した。

iii 地中日射面：同じ実験室の南面の壁から約50cmの所を用い、地中に約20cmの穴を開け、馬鈴薯を入れたガラスポットをそう入した。ポットには1959年にガラス蓋をし、1960年は無蓋にし、ともにその上に厚い下敷きシートでおおいをした。

iv 地中日陰面：地中日射面と同じ条件で北面に設置した。

v 室 内：実験室内の直射日光があたる場所に馬鈴薯を入れたガラスポットをおく、ガラス蓋とした。

第6図

人工条件差によるクワコナカイガラムシ越冬世代ふ化幼虫の移動期I（秋果試1961）

結果
この試験には調査方法上の問題点が多くあったが、目的とするふ化幼虫の移動の概要は一応知ることができた。調査方法の問題点として1959年には次のことがあげられる。地上日射区のふ化率は室内区に比べて約半数よりも多く、地上日陰区のふ化率は良好だったが、ふ化期間と幼虫の移動期のほどが長く、室内の19日間に比べて31日間を要する結果となった。これまでは、ポット内の気象条件が影響したものの、その他の原因によるものか解明することができなかった。また、地中区の日照日陰両区では、馬鈴薯にカビが生えやすく、そのつど、新しい馬鈴薯に供試卵を移植する結果になった。この原因は、ポットにガラス蓋をしたため、内部が多湿になって生じたものと考えられる。1960年は多湿化を防ぐため
に無蓋で実験したところ、地上の日射、日陰両区にてクモ類の侵入が多く、地中の日射、日陰両区は降雨のたびに雨水がポットにたまり、供試卵が水につかることもあった。クモ類は日中ときどき見まわって捕殺し、浸水はポットの底に装置シャーレーを逆におき、供試馬鈴薯をその上におく方法を途中から行なった。しかし、浸水卵を除去したため、調査出来た卵のうち 1 区 6 ～ 25 個と減少し供試卵が不ぞろいになった。また、ふ化した幼虫がクモ類に倒されたものも出たと考えられる。

1961 年の移動虫を数えた方法では、前年の失敗に基づき、クモ類の捕殺と侵入防止にとまとめたため、調査方法上に問題は少なかったが、ポットの管理に手数を要したと同時に、3 日ごとに馬鈴薯の軟白芽に附着した幼虫を除去するに手数がかかり、能率が著しく悪かった。以上のような調査方法上の問題はあったが、一応、越冬卵のふ化開始期、ふ化幼虫の移動期間を解明する糸口を見いだし得た。その概要は次のとおりである。

越冬卵のふ化開始日は地上日射区が最も早く、地上日陰区がこれにつづき、地中日射区、地中日陰区の順におそく、温度が低いほどおそくなかった。ふ化開始期から移動開始日までの期間は、地上の日射、日陰両区が 0 日間で、地中日射区が 1 日間、地中日陰区が 2 日間を要し、移動期間もふ化の順序と同じくおそくなかった。各区の移動期間は比較的短期間に行われるが、最も早く移動した地上日射区の移動開始日から、最もおそく移動した地中日陰区の移動終了日までの通算期間は、1959 年が 61 日間、1960 年が 41 日間、1961 年が 63 日間の長期間を要した。

(2) 自然条件下の越冬卵ふ化開始期とふ化幼虫移動期について（1962 ～ 1967 年）

i 予備試験（1962 ～ 1964 年）

材料と方法

同一地区リンゴ園の樹幹粗皮下から卵のうを採集し、直ちに白紙厚紙（2.5 × 10.0 cm）に間隔をおいて 5 卵のうずつ附着させ、試験管（口径 3 cm）に入れさせて脱脂棉で栓をし、翌日から区分処理した。移動調査は卵のうから外部に出た幼虫を移動虫とみなしてカウンターで数え、調査ごとに毛筆で幼虫を除去し、新しい給栓と交換した。ふ化開始日は馬鈴薯利用の場合と同じく、ふ化幼虫出現日をみた。調査は毎回午前 10 ～ 12 時に行なった。

記録方法

・予備試験Ⅰ（1962年）

3 区に区分し、1 区 1 試験管（5 卵のう）を用いて 4 月 20 日に処理開始し、5 月 1 日から半月ごとに幼虫の移動数をカウンターで数えた。

・予備試験Ⅱ（1963 ～ 1964 年）

1963 年は 7 区分し、1 区 1 試験管（5 卵のう）を用い、4 月 20 日に処理開始して 5 月 1 日から 2 日ごとに幼虫の移動数を調査した。しかし、降雨の度に給栓をとおして管内に浸水し、全区とも調査が不可能になった。
そこで、1964年は試験管内の浸水を防止するため、綿栓部をビニール布（20×20cm）でおおい、ゴムバンドでとめて調査した。また、同じ区の試験管によるふ化開始や移動期の差を検討する目的で、室内、樹幹南面、樹幹空洞部、根茎地の中の4区に2試験管（10卵のうち）を用い、他の２区には1試験管（5卵のうち）を用いた。区分処理は4月20日に行ない、調査は5月1日から2日ごとに行なった。

**試験区分**

| 年度 | 供試箇所 | 1試験管 | 区 | 分
|------|----------|---------|----|----|
|      | あたりの卵の数 | 装置（直射） | 全面 | 中
| 1962 | 5        | ○       | ○  | ○
| 1963 | 5        | ○       | ○  | ○
| 1964 | 5～10    | ○       | ○  | ○

凡例：○：1試験管供試箇所，○：2試験管供試箇所。

i 樹幹南面（直射）：樹幹部の地上1.5mの南面に、試験管の綿栓部を上にして針金で固定し管内の厚紙の卵のうち着面を日光に向けた。

ii 室内：試験管立てを用い、綿栓部を上にして、室内実験テーブルの日光のあたる場所においた。

他の3区は分類本試験の調査方法を参照。供試箇は、ふ化卵の移動消長の項、老木樹のNo.1樹を用いた。

**結果**

調査方法上の問題として、1962年の予備試験Iでは障害が起こらず、順調に調査することが出来た。しかし、処理区を拡大し、同じ方法で48時間調査を行なったところ、全区とも降雨の度に綿栓部から雨水が試験管内に浸水し、供試卵のうち水に染まること、全然ふ化しなかった。

両年のこの差は1962年の調査期間中は降水量がほとんどなく1963年は降水量が多かったためと思われる。そのため、1964年は綿栓部をビニール布でおおって処理した結果、全く障害なく調査することができた。また、移動虫を数える際の誤差を少なくするためにには、調査ごとに綿栓だけでなく、試験管も新しいものと交換した方がよいことも1964年の調査期間中に確認した。

調査結果は、1962年、1964年とも、越冬卵のふ化開始期は
樹幹南面と樹幹北面がほとんど同時で最も早く、粗皮下、空洞部、根際地中の順におそくなり、気温の低い区はおそかった。そしてふ化開始日から移動開始日までの期間は、樹幹南面、室内、粗皮下などは0日間、空洞部は3日間、根際地中は6日間を要した。移動開始期もふ化開始期と同じ順序で行なわれ、これにふ化開始日から移動開始日までの期間が加わり、温度の低い区ほど移動時期が遅れを示した。各区の移動期間は8〜14日の短期間に終了したが、通算移動期間は34日間の長期にわたった。これらは、人工条件下で行なった馬鈴薯を利用した方法の結果とはほとんど同じ傾向であった。

また室内、樹幹南面、空洞部、根際地中の4区で行った2試験管によるふ化開始日、移動期間の差は、時期、量とも差がなく、この調査方法の実用性が高いことを伺えた。

ii 本試験（1965〜1967年）

材料と方法

試験園の樹幹粗皮下から4月20日に卵のうを採集し、白紙厚紙（2.5×10.0cm）に大体同じ大きさの卵のうを片面に隔てて5つずつ附着させ、口径3cmの試験管に入れて脱脂綿で栓をし、翌日まで実験室においた。次の日、箱根部をビニール布（20×20cm）でおおってゴムバンドでとめ1区2試験管（10卵のう）を区分処理した。区は、樹幹部で粗皮がはがれた状態、粗皮下、樹幹空洞部内、根際地中など6区を設定し、同じ条件で3年間継続した。
記録方法

ふ化開始日の調査は、調査にビンセットで軽く卵のうをおこしてふ化幼虫を確認した。移動虫の調査は、卵のうから外部に脱出した幼虫をカウンターで数え、調査ごとに毛筆で移動虫を除外した。この際、締結にもなるものの、試験管に着着するものが多いので、特にこの両部の調査は慎重に行ない、新しい締結を試験管を毎回交換して誤差を少なくするようとめた。また、調査中に注意したことは、ふ化幼虫がまだ移動しないで卵のう下に集団している時に、急に目光をあてると分散移動することがあるので、調査の間、卵のうに日光をあてるようとめた。調査は5月1日から24時間ごとに移動終了期まで行ない、時間は午前10〜12時に行った。

供試樹と試験区分

供試樹は、平鹿郡増田町字沢田　藤原　巖氏リンゴ園の国光老木（45年以上）1樹を用いた。この樹は、住宅の東側約5mのところにあり、主幹の長さは約250cm、主枝は南側に1本あるだけで結果枝が少ない。地上から200cmの北側に主枝の古い切口があり、地上30〜120cmの所に15×20cmの穴があいている。樹幹周は約150cm、樹冠下の西側は約15cm低く道路になっていて、園はオーチャードの全面草生にしてある。

試験区分は、自然条件下で越冬卵が産まれる代表的な部分6カ所を選んだ。

<table>
<thead>
<tr>
<th>年度</th>
<th>供試卵の数</th>
<th>1試験管の試験区</th>
<th>分</th>
<th>鷲の数</th>
<th>南側</th>
<th>南側</th>
<th>南北</th>
<th>北側</th>
<th>北側</th>
<th>面空歩部</th>
<th>面空歩部</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>10</td>
<td>5</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>1966</td>
<td>10</td>
<td>5</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>1967</td>
<td>10</td>
<td>5</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

凡例 ○：2試験管供試区

i 樹幹南面：樹幹の地上から約150cmのところの南面に、締結部を上にして試験管を針金で固定し、管内厚紙の卵のう着着面を目光と反対の樹幹側に向けておいた。
ii 樹幹北面：(i)と同じく北側に固定し、卵のう着着面を樹幹側に向けておいた。
iii 粗皮下南面：地上から約150cmの樹幹南面に杉皮を針金で巻きつけ、その内側に試験管を深くそう入した。
iv 粗皮下北面：(iii)と同じく北面に固定した。
v 樹幹空洞部：地上約120cmの樹幹東南側に穴があいている空洞部（底は地上から約30cm）に試験管を針金でつなげおき、試験管の底が空洞部の底につくように固定した。
vi 根際地中：樹幹北側の根際地中約10cmのところに試験管を横におき、針金を胴部にまいてその端を土にかえておいた。

気象観測

試験期間中は、樹幹南面、粗皮下北面、樹幹空洞部、根際地中の4区について、供試試験管の側
に自記温度計（2版）の感温部を固定し、温度を記録した。また、降水量は試験院と同じ町にある専売公社増田出張所と当試験場の観測値を使用し、ふ化とふ化幼虫の移動と気象の関係を検討した。

結 果

3年間の結果から、ふ化開始日は樹幹南面が最も早く始まり、樹幹北面がこれから1～2日遅れ粗皮下南面が同じく1～2日、粗皮下北面が2～6日、樹幹空洞部が6～8日、根際地中が10～13日の順に遅れ、処理区の温度が低いほどふ化開始期が遅れた。ふ化開始日から移動開始日までの期間は、樹幹南面が0～1日、樹幹北面が0～2日、粗皮下南面、粗皮下北面の2区は0～1日、樹幹空洞部が1～2日、根際地中が3～4日間あり、これもその場所が低温ほど期間が長い傾向がある。ふ化幼虫の移動開始日はふ化開始日と同じ順序で始まり、樹幹南面が最も早く、これより樹幹北面が0～1日、粗皮下南面が1～2日、粗皮下北面が2～6日、空洞部が6～9日、根際地中が13～18日の順で移動開始した。移動期間は区ごとにみれば短期間に行なわれ1965年が8～11日間、1966年が9～12日間、1967年が7～11日間で区間に差が認められなかった。そして移動終了日も移動開始日と同じ順序であった。各区の移動期間はそれぞれ短期間で終了したが、移動開始の最も早く始まった樹幹南面のふ化開始日から、移動終了の最もおそかった根際地中の移動終了日までの通算移動期間は、1965年が25日間、1966年が22日間、1967年が24日間の長期間みられた。それぞれの区についてふ化幼虫の移動消長をみると、正規曲線を描くものが少なく、移動が急に少なくなったり

第9図 自然条件差によるクラコナカイガラムシ越冬世代のふ化開始期とふ化幼虫移動期
（秋果試1965～1967）
全く停止する日もみられる。このふ化幼虫の移動量の多少と気象の関係を検討したところ、降水量が多く、最高気温が低い時は移動が抑制される傾向がみられた。そして、通算移動虫数のカープをみると、越冬世代ふ化幼虫の移動はかなり長期間にわたり、乱れた消長を示している。

考 察

この試験目的を達成するためには、調査方法の確立が先決であり、その検討に長期を要した。前期に検討した黒潮の干し白芽を利用した方法では、多くの欠点がみられ、雨水浸入防止のガラス蓋をすればpot内の多湿になっていて黒潮にカビが発生し、多湿防止のためにガラス蓋をとると雨水が浸入したり、捕食グロウ類による障害があった。また干し白芽に移動附着した虫数を数えるのに手数がかかり、実用性が低いことがわかった。後期に検討した試験管を利用する方法は、綿栓部からの雨水の浸入防止のためにビニール布を巻き、調査の際ごとに綿栓、試験管を新しいものと交換することによって、誤差も少なく、能率よく移動虫を調査することが可能で、自然条件での試験にも実用性が高いことを知ることが出来た。

人工条件と自然条件のもとで行なった両試験で、移動期間の巾に差はあったが、多くの点で共通した傾向がみられた。ふ化は湿度の高い場合の卵のうから始まり、温度の低い場合ほど遅れる。ふ化開始日から移動開始日までの期間も、この順序にしたがって巾が広くなり、0日から4日の差があらわれた。この差は、湿度も重要因子として考えられるが、樹幹部より空洞部内、根際地中などは湿度が高く、且つ日射量も少ないため、それが主因か確認することができなかった。また、ふ化幼虫の移動開始日は、ふ化開始と同じ順序で行なわれ、移動期間は同じ条件下では比較的短期間で終了する。しかし、3月末に処理区分した人工条件下の移動期間の方が、4月20日に処理区分した自然条件下のものよりも巾が広い傾向がみられた。これは、処理区分の時期の早遅によるものか、処理方法の差によるものかは明らかでない。そして、同じ条件下での移動期間は比較的短期間であったが、通算移動期間は自然条件下で22〜25日間、人工条件下で41〜63日間の長期がみられている。自然条件下で試験したとはいえ、この方法は4月20日に樹幹粗皮下に採集したものを処理区分したので、採集前に粗皮下の温度がすでに加えられている。粗皮下の温度は第9図のように、空洞部、根際地中の温度より高いので、前年の秋から空洞部、根際地中に産卵されたものより加熱された状態で供試された。そして、ふ化は高気温で供試されるので（2、3、6）、空洞部、根際地中に処理した卵は、自然に前年秋からそこに産卵されたものより早くふ化し、移動期間の巾も短縮されたと考えることも可能で、実際には、この試験値より巾が広いと想定することもできるよう。3月末に採集して区分した人工条件下の試験結果が、4〜6月間もあったことはこの裏付けの一つと書えるのではなかろうか。更にふ化幼虫の移動消長は正規曲線を描くことが少なく、低温降雨の際に移動が抑制されることもあった。この降雨は湿度が高くなったことを意味すると思われるが、その関係は判明しなかった。
Ⅱ 総合考察

ふ化幼虫の移動消長については、高橋（20）、福田（6）ら、長野農試（15）らが、和梨について報告した。高橋（20）は和梨の果実潜入虫を調べ、ふ化幼虫の移動は年3回みられ、各世代ごとに重なりました切れ目のある単純な消費を示し、消費量は世帯をきるにつれて多くなることを報告している。福田（6）らは、和梨の短果枝葉上のふ化幼虫出現期を3年間調査し、ふ化幼虫の移動は年3回みられ、越冬時の移動量は少ないが、年により移動期間が長くなって第1世代の移動期と重なることもある。そして、第1世代と第2世代は移動量が多く、移動期間が重なることを報告している。また、長野農試（15）は和梨の新葉上のふ化幼虫出現期を地域別に調査し、地域による各世代の移動時期、移動量に差が大きく、移動回数は年3回であるが、移動しない世代もみられることがあり、移動消長はかなり変動があることを報告している。

一方、リンゴ害虫としてこの虫の研究は、第二次大戦後から断片的に行われた程度で、豊島（25）が「最近青森県下で特に発生が多い害虫」として、概要を病害虫の生態と防除（果樹病）に記載したのがはじめてであろう。その後は充分な基礎調査もなく、わずかで越冬卵のふ化期を子察的に検討した津川（22）らの報告があるに過ぎない。津川らは室内における試験管内での越冬卵のふ化期、移動期は、いったん葉が消えた卵のふ化期、移動期と大差がないとの実験結果に基づき、リンゴ品種の鶴、紅玉、国光などの開花始め、満開期とふ化の初発日との間に高い相関を見出した。そして、自然条件下のふ化は国光満開期から2週間後に終了し、移動期は2週間程度であることを報告した。

これに比べ、この試験結果ではかなりの相違点がみられた。枝幹部に欠損がなく、粗皮量の少ない果実樹では、高橋（20）、津川（22, 23）らが報告したような単純な型の移動消長もみられたが、同じような果実樹でも複雑な移動消長を示すものも少なくない。そして、枝幹部に欠損があり、粗皮量の多い樹ほど移動消長は複雑な型を示し、しかも、頃より、年により、差が大きいことが解明された。

年間の移動回数は2～3回みられるが、3回の年が多く、成虫は年2回発生した。ふ化幼虫の各世代ごとの移動消長では、越冬が移動量、移動時期とも不ぞろいで、全然移動しないものから60日間にわたって大量に移動する場合もあった。これに比べ、第1世代のふ化幼虫は7月20日頃から10～40日間で移動し、ピークは移動開始日から10日内にみられることが多く、移動量は不ぞろいだが、移動期間は比較的そろって行なわれた。そして、第2世代は移動量、移動時期に変動が大きくみられた。

青森県（2）では、成虫が2回発生し、ふ化幼虫の移動回数は2回が多く、それに3回移動する。長野県（15）では、成虫が2～3回発生し、標高が高い地域が2回、低い地域が3回、ふ化幼虫の移動は3回と報告されている。秋田県では成虫が2回発生し、ふ化幼虫の移動が3回の年が多く、
それに2回移動するが、この差は気温によるものと思われる。

越冬後で、ふ化幼虫移動が不斎一な原因は、越冬卵産卵位置の差が主因であることを実験的に裏付けた。リングゴ樹の越冬卵産卵位置は、枝幹の粗皮下、カシムオグリガ等の被害痕跡下、枝幹の切口などのほか、枝幹の亀裂部内、枝幹に出来て空洞部内、樹皮中下、下草の根など、視覚的にとらえられ部分にあり、全体の卵産卵数を数値的に知ることが困難である。このように産卵場所は多くあるが、いずれも成虫の潜伏出来る場所である。この産卵場所は樹の形によって差が大きく、風雪害などによる枝幹部の欠損のほど、産卵位置や産卵数に変動が大きい。また、越冬卵は産卵場所の有効積算温度によってふ化するので、産卵位置の変動が大きいことは、ふ化時期、移動時期にも変動が大きい原因になることが考えられる。このほか、移動期間中の低温度、降雨による移動の抑制もあり、更に、産卵場所の空間、光の量、食餌の量なども要因としてあげられるよう。これらの諸要因が重なるために越冬後で、ふ化幼虫の移動が、量、時期ともに不斎一になるものと考えられる。

津川（22, 23）の報告に、越冬卵の産卵位置は枝幹枝上を粗皮下と限定し、空洞部内、樹皮中下などで、観察において、樹内内のふ化幼虫の移動を推定したものと考えられる。その移動型は、この調査の枝幹に欠損が少なく、粗皮の少ない樹における、越冬後でふ化幼虫の移動型と一部は似ているが、自然ではこれも一つの型であって、大部分は複雑な移動型を示した。また、観察の移動消長とリングゴの生育期との間に相関関係は高く、津川らの報告と相違したが、ふ化や移動は越冬卵の諸要因に影響されているため、単なる、気温と相関の高いリングゴ生育期との間に関係がでなかったものと考えられる。

この試験から、越冬後で、ふ化と移動が不斎一になる原因を一応裏付けたが、第1世代のふ化幼虫移動期が比較的そう、原因については解明し得なかった。越冬後の移動期が長ければ、次の第2世代の移動期はそれ以上に長くなることが理論的に考えられる。しかし、観察の実態は樹型に対応なく、7月20日頃から約10〜40日間の間に、ほとんどをかかった時期に移動し、ピークは移動開始日から大体10日以内にみられている。福田（6）ら、長野農試（15）の報告に、越冬世代の移動期間は比較的短い時期に約10〜40日間の内で行なわれており、この調査結果と相違点が見出される。その原因は不明であるが、越冬後で成虫の産卵位置の分布、ふ化幼虫の移動にかかわる諸要因などが解明すれば、解明の糸口を見出すものと思われる。

第2世代ふ化幼虫の移動は、移動期、移動時期とも変動が大きい。これは、第1世代成虫の産んだ越冬卵が、9〜10月の湿度で一部がふ化し、移動するために生ずる現象と考えられる。越冬卵の休眠は浅いもので、翌春、完全に活動するにはある程度の低温期間が必要であるが、9、10月に加温するだけで容易に休眠を破ることはすでに実証されている（2, 6）。したがって、越冬卵の産卵量が多く、9〜10月に高温の年は、ふ化幼虫の出現が多く、移動期や移動期間の長さも大きくなる。このような年は、幼虫、成虫態で越冬に入れるものが多くなるが、これらは冬期に殆ど倒
死する。極少例として、1960年の老木樹の1の移動消長調査のさい、5月10日に衰弱した成虫を
樹幹部に2頭発見している。しかし、この成虫は産卵出来ずに倒死したことから、翌春の発生源は
卵巣だけと考えて差し支えなからであろう。そのため、9～10月が高温の年は、越冬卵が越冬せずにつ化
し、移動するため、この量が多い年の次年発生源は著しく少なくなる。老木樹の移動調査で、1961
年秋の第2世代に化幼虫の移動量が多く、1962年春の越冬世代に化幼虫移動量が著しく少なくなっ
たのはこの現象によったものである。（第1図）

9年間に野外圃場で110樹について移動消長を調べた結果、この害虫の化幼虫の移動は一定の
型のない複雑なものであることを知り得たが、この害虫の潜伏場所が、リンゴでは多様であること
が主因と言えよう。そして、その移動消長は第4図のように5つの型に大別することが出来る。移
動型の1型は、枝幹部に欠損があり、粗皮量の多い樹にみられ、1958～1959年の老木樹にみられた
が、それ以降は殆どみられなくなった。2型と3型は枝幹部の欠損の有無にかかわらずみられ、
一般的に粗皮量が多く、この害虫の発生密度が高い樹に多い型である。2型は、枝幹上に潜伏場所
が少なくても、根際地中に多く潜入している場合にみられる型のようである。1960年以降から現在
までこの2つの型が多く、一般的なものと云えよう。福田（6）の報告したものはこの2つの型
に該当する。4型は潜伏場所が多く、発生密度が低い樹にみられるが、余り多くない型である。5
型は枝幹に欠損が少なく、粗皮量も少ない樹で、発生密度が余り高くない樹に多くみられ、一般的に若
い樹に多い型と云えよう。高橋（20）、津川（22、23）の報告したものが該当する。

IV 摘 要

1、慣行防除法の越冬世代に化幼虫移動期に殺虫剤を散布する方法は、効果に浮動があり、実用
性に疑問があったので、化幼虫の移動の実態を1958～1964年に調査し、さらに、越冬卵の産卵場
所の条件差による化、移動期を1959～1966年に実験した。

2、化幼虫の移動消長は、枝幹部に欠損の多い老木樹と、欠損のない次モ樹を用い、同一樹に
について5月から移動終了期まで10日ごとに6～7年間順続調査した。また、1959年に県南部の10地
点について、移動消長の地域差を調査した。

3、その結果、枝幹部に欠損の多い樹ではかなり複雑な移動型がみられる。欠損の少ない樹では単
純な型が多いが、複雑な型も少なくない。しかも、年により、樹によりかなり変動が認められる。
また、地域差もみられたが、これは供試樹の条件差が主因と考えられる。

4、越冬世代に化幼虫の移動は、移動量、移動期間とも特に不斎一であるが、第1世代に化幼虫
の移動は比較的期間が短く、そのピークは移動開始から10日以内に認められた。第2世代に化幼虫
の移動は、9・10月の気温の影響をうけ、移動量、移動期間とも差が多かった。

5、越冬卵の産卵場所の条件差による化、移動期間の実験は、人工条件と自然条件での2実験を
行なった。
6. ふ化開始期は気温の高い場所の卵のうから始まり、気温の低い場所の卵のうほどおそくなっ
た。
7. ふ化開始日から移動開始日までの期間は、樹幹部、粗皮下、室内などでは0～1日、樹幹空
洞内では1～3日、根際地中では3～6日を要した。
8. ふ化幼虫の移動は、ふ化と同じく気温の高い場所から始まり、次第に気温の低い場所にお
よび同一条件下の移動期間は比較的短期間にそろうが、条件差を通算した期間はかなり長期であった。
9. ふ化幼虫の移動は、気温と降水量に影響されるようで、気温が低く、降雨の時は移動が抑制
された。
10. この越冬卵産卵位置の条件差によるふ化開始前期移動期間の試験結果は、越冬世代ふ化幼虫
の移動消長が不斉であることを裏付けるものと考える。
11. 1958～1966年の9年間、110樹のふ化幼虫移動消長の調査結果から、移動型を5つの型に区
分することができた。

V 引用文献

1. 青森県（1966～1967）りんご指導要項
2. 青森県りんご試験場（1960～1967）果樹等作物病害虫発生予察成績
3. 秋田県果樹試験場（1957～1965）業務報告
4. 秋田県果樹試験場（1960～1967）果樹等作物病害虫発生予察成績
5. 福岡県農業試験場園芸分場（1960～1967）果樹等作物病害虫発生予察成績
6. 福田淳男、字川川英夫（1965）鳥取県果樹試験場研究報告 3: 63～92
7. 福田則雄（1964）果樹害虫研究集録：257
8. 岩手県園芸試験場（1960～1967）果樹等作物病害虫発生予察成績
9. 岩手県農業試験場園芸分場（1960～1962）りんご農薬使用試験成績
10. 小林森己（1960）岩手県果樹協会りんご栽培指針：35～40
11. 小林森己（1962）北日本病害虫研究会年報 13: 108
12. 村上陽三（1965）園芸試験場報告 4：125～144
13. 村上陽三（1966）園芸試験場報告 5：139～163
14. 村上陽三（1966）福島県果樹試験場報告 7：87～106
15. 長野県農業試験場下伊那分場（1960～1966）果樹等作物病害虫発生予察成績
16. 成田 弘、佐藤秀司、高橋俊治（1960）応動虫発生要旨：29
17. 成田 弘、高橋俊治（1966）北日本病害虫研究会年報 17：137
18. 成田 弘、高橋俊治（1967）北日本病害虫研究会年報 18：114
19. 成田 弘、高橋俊治（1968）北日本病害虫研究会年報 19：85
20. 高橋昌次（1936）新潟県農試特別報告 36：1～116
21. 津川 力（1958）青森県りんご協会技術シリーズ 1：1～15
22. 津川 力、山川弘（1959a）応動虫 3：172～175
23. 津川 力（1959b）青森県りんご協会技術シリーズ 8：1～16
24. 津川 力、山田雅輝（1964）北日本病害虫研究会年報 15：124
25. 塩島在寛（1950）病害虫の生態と防除図榭：62～63
26. 山梨県農業試験場果樹分場（1962～1966）果樹等作物病害虫發生予察成績
27. 安延義弘、伊藤祐孝（1964）神奈川県農業試験場研究報告：41～47
Studies on the Ecology and Control Methods of Comstock Mealybug (*Pseudococcus comstocki* KUWANA) in Apple Orchard

I. Movement status of hatched larvae of comstock mealybug

Hiroshi Narita, Yuzi Takahashi and Shuzi Sato

Summary

(1) The control method by applying insecticides against comstock mealybug (*Pseudococcus comstocki* KUWANA) during the moving periods of hatching larvae from the dormant generation (hatching being around 10-20 days after petal fall of Jonathan variety of apple), which has hitherto been taken as a routine control scheme, brings about some frustration in effectiveness and leads the author back to the doubt for its practical value. In view of this problem the experiment of the author was directed during 1958-1964 to investigating the practical situation of the movemet of hatched larvae and further during 1959-1966 to determining the variance in hatching and movement periods under different conditions depending upon varying oviposition sites.

(2) The status of the movement of hatched larvae was determined for successive 6-7 years on individual tree with checks at 10 day-intervals from may to the completion period of the movement using aged apple trees with much structural injuries on tree trunk and adult trees without trunk injuries. In 1959 the local difference of the larval movement was also determined at 10 places in southern parts of Akita prefecture.

(3) As the result, considerably complicated movement pattern was observed on the trees with much trunk injuries. Whereas on the trees with less trunk injuries the majority of the pattern was simple. Nevertheless complicated pattern was also observable in several cases. Further considerable variation was observable yearly and with varying trees. Although some local differences were also observed, this is considered mainly due to the difference in conditions of individual tree in test orchards.

(4) Although the movement of hatched larvae from the dormant generation was extremely irregular in its period and capacity, the movement periods of hatching larvae of the first generation were considerably uniform and the peak movement was observed within 10 days after the beginning of movement. The movement of hatching larvae from the second generation, however, was changeable so much in time and in capacity depending upon
the temperatures during September and October.

(5) The experiment for determining the hatching and movement periods under different conditions of varying oviposition sites of overwintering eggs was undertaken with two conditions under artificial and field conditions.

(6) Hatch started first from the egg capsule oviposited at the places of higher temperatures and was delayed with egg capsule at the places of lower temperatures.

(7) The periods from the beginning of hatch to movement were mostly 0 day or rarely 1 day on tree trunk, inside bark, and in the rcom, 1–3 days in trunk hole and 3–6 days in the soil around root base.

(8) The movement of hatched larvae occurred first from the egg capsules in higher temperature–zone as in case of hatching order and was prolonged with egg capsules in lower temperature–zone. The movement period under the same conditions, however, was found uniform with considerably short period. However the movement periods involving varying conditions were considerably longer.

(9) The movement of hatched larvae was presumably related to temperature and rainfall. The movement was suppressed at lower temperatures and with much rainfall.

(10) It is plausively thought that the experimental results for the starting periods of hatch and movement under different conditions depending upon different oviposition sites of overwintering eggs account for the irregurality in the movement of hatched larvae of the dormant generation.

(11) Resulting from the experiments for 9 years during 1958–1966 concerning the movement status of hatched larvae on 110 trees, it is concluded that the movement pattern can be categorized into 5 types.